An experimental study was conducted to explore the effect of surface flexibility at the leading and trailing edges on the near-wake flow dynamics of a sinusoidal heaving foil. Midspan particle image velocimetry (PIV) measurements were taken in a closed-loop wind tunnel at a Reynolds number of 25,000 and at a range of reduced frequencies (k = fc/U) from 0.09 to 0.20. Time-resolved and phase-locked measurements are used to describe the mean flow characteristics and phase-averaged vortex structures and their evolution. Large-eddy scale (LES) decomposition and swirling strength analysis are used to quantify the vortical structures. The results demonstrate that trailing edge flexibility has minimal influence on the mean flow characteristics. The mean velocity deficit for the flexible trailing edge and rigid foils remains constant for all reduced frequencies tested. However, the trailing edge flexibility increases the swirling strength of the small-scale structures, resulting in enhanced cross-stream dispersion. Flexibility at the leading edge is shown to generate a large-scale leading edge vortex (LEV) for k ≥ 0.18. This results in a reduction in the swirling strength due to vortex interactions when compared to the flexible trailing edge and rigid foils. Furthermore, it is shown that the large-scale LEV is responsible for extracting a significant portion of energy from the mean flow, reducing the mean flow momentum in the wake. The kinetic energy loss in the wake is shown to scale with the energy content of the LEV.

References

References
1.
Drucker
,
E. G.
, and
Lauder
,
G. V.
,
2000
. “
A Hydrodynamic Analysis of Fish Swimming Speed: Wake Structure and Locomotor Force in Slow and Fast Labriform Swimmers
,”
J. Exp. Biol.
,
203
(
16
), pp.
2379
2393
.
2.
Lauder
,
G. V.
,
Madden
,
P. G. A.
,
Mittal
,
R.
,
Dong
,
H.
, and
Bozkurttas
,
M.
,
2006
, “
Locomotion With Flexible Propulsors: I. Experimental Analysis of Pectoral Fin Swimming in Sunfish
,”
Bioinspir. Biomim.
,
1
(
4
), pp.
S25
S34
.
3.
Triantafyllou
,
M. S.
,
Triantafyllou
,
G. S.
, and
Yue
,
D. K. P.
,
2000
, “
Hydrodynamics of Fishlike Swimming
,”
Annu. Rev. Fluid Mech.
,
32
(
1
), pp.
33
53
.
4.
Ramamurti
,
R.
,
Sandberg
,
W. C.
,
Löhner
,
R.
,
Walker
,
J. A.
, and
Westneat
,
M. W.
,
2002
, “
Fluid Dynamics of Flapping Aquatic Flight in the Bird Wrasse: Three-Dimensional Unsteady Computations With Fin Deformation
,”
J. Exp. Biol.
,
205
(
19
), pp.
2997
3008
.
5.
Drucker
,
E. G.
, and
Lauder
,
G. V.
, “
Experimental Hydrodynamics of Fish Locomotion: Functional Insights From Wake Visualization
,”
Integr. Comp. Biol.
,
42
(
2
), pp.
243
257
.
6.
Xu
,
J.
, and
Sun
,
H.
,
2015
, “
Fluid Dynamics Analysis of Passive Oscillating Hydrofoils for Tidal Current Energy Extracting
,”
2015 IEEE International Conference on Mechatronics and Automation
(
ICMA
), Beijing, China, Aug. 2–5, pp.
2017
2022
.
7.
Jones
,
K. D.
,
Bradshaw
,
C. J.
,
Papadopoulos
,
J.
, and
Platzer
,
M. F.
,
2005
, “
Bio-Inspired Design of Flapping-Wing Micro Air Vehicles
,”
Aeronaut. J.
,
109
(
1098
), pp.
385
394
.
8.
Jones
,
K. D.
,
Davids
,
S. T.
, and
Platzer
,
M. F.
,
1999
, “
Oscillating-Wing Power Generation
,” 3rd
ASME/JSME
Joint Fluids Engineering Conference, San Francisco, CA, July 18–23, FEDSM99-7050.
9.
Apte
,
S. V.
, and
Base
,
W.-P. A.
,
2011
, “
Low Reynolds Number Flow Dynamics and Control of a Pitching Airfoil With Elastically Mounted Flap Actuator
,”
ASEE
Summer Faculty Fellowship Program, June 19–Aug. 26, Wright-Patterson Air Force Base, OH.
10.
Anderson
,
J. M.
,
Streitlien
,
K.
,
Barrett
,
D. S.
, and
Triantafyllou
,
M. S.
,
1988
, “
Oscillating Foils of High Propulsive Efficiency
,”
J. Fluid Mech.
,
360
, pp.
41
72
.
11.
Drost
,
K. J.
,
Johnson
,
H.
,
Apte
,
S. V.
, and
Liburdy
,
J. A.
,
2011
, “
Low Reynolds Number Flow Dynamics of a Thin Airfoil With an Actuated Leading Edge
,”
AIAA
Paper No. 2011-3904.
12.
Visbal
,
M. R.
,
Gordnier
,
R. E.
, and
Galbraith
,
M. C.
,
2009
, “
High-Fidelity Simulations of Moving and Flexible Airfoils at Low Reynolds Numbers
,”
Exp. Fluids
,
46
(
5
), pp.
903
922
.
13.
Von Ellenrieder
,
K. D.
,
Parker
,
K.
, and
Soria
,
J.
,
2003
, “
Flow Structures Behind a Heaving and Pitching Finite-Span Wing
,”
J. Fluid Mech.
,
490
, pp.
129
138
.
14.
Parker
,
K.
,
Von Ellenrieder
,
K. D.
, and
Soria
,
J.
,
2007
, “
Morphology of the Forced Oscillatory Flow Past a Finite-Span Wing at Low Reynolds Number
,”
J. Fluid Mech.
,
571
, pp.
327
357
.
15.
Warrick
,
D. R.
,
Tobalske
,
B. W.
, and
Powers
,
D. R.
,
2005
, “
Aerodynamics of the Hovering Hummingbird
,”
Nature
,
435
(
7045
), pp.
1094
1097
.
16.
Zhu
,
Q.
,
2012
, “
Energy Harvesting by a Purely Passive Flapping Foil From Shear Flows
,”
J. Fluids Struct.
,
34
, pp.
157
169
.
17.
Huxham
,
G. H.
,
Cochard
,
S.
, and
Patterson
,
J.
,
2012
, “
Experimental Parametric Investigation of an Oscillating Hydrofoil Tidal Stream Energy Converter
,”
18th Australasian Fluid Mechanics Conference
(
AFMC
), Launceston, Australia, Dec. 3–7.
18.
Ashraf
,
K.
,
Khir
,
M. H. M.
, and
Dennis
,
J. O.
,
2011
, “
Energy Harvesting in a Low Frequency Environment
,”
National Postgraduate Conference
(
NPC
), Kuala Lumpur, Malaysia, Sept. 19–20.
19.
Peng
,
Z.
, and
Zhu
,
Q.
,
2009
, “
Energy Harvesting Through Flow-Induced Oscillations of a Foil
,”
Phys. Fluids
,
21
(
12
), p.
123602
.
20.
Jones
,
K. D.
, and
Platzer
,
M. F.
,
1997
, “
Numerical Computation of Flapping-Wing Propulsion and Power Extraction
,”
AIAA
Paper No. 97-0826.
21.
McKinney
,
W.
, and
DeLaurier
,
J.
, “
Wingmill: An Oscillating-Wing Windmill
,”
J. Energy
,
5
(
2
), pp.
109
115
.
22.
Kinsey
,
T.
, and
Dumas
,
G.
,
2012
Computational Fluid Dynamics Analysis of a Hydrokinetic Turbine Based on Oscillating Hydrofoils
,”
ASME J. Fluids Eng.
,
134
(
2
), p.
021104
.
23.
Heathcote
,
S.
,
Martin
,
D.
, and
Gursul
,
I.
,
2004
, “
Flexible Flapping Airfoil Propulsion at Zero Freestream Velocity
,”
AIAA J.
,
42
(
11
), pp.
2196
2204
.
24.
Youcef-Toumi
,
K.
,
2005
, “
Performance of Machines With Flexible Bodies Designed for Biomimetic Locomotion in Liquid Environments
,”
2005 IEEE International Conference on Robotics and Automation
(
ICRA 2005
), Apr. 18–22, pp.
3324
3329
.
25.
Miao
,
J.-M.
, and
Ho
,
M.-H.
,
2006
, “
Effect of Flexure on Aerodynamic Propulsive Efficiency of Flapping Flexible Airfoil
,”
J. Fluids Struct.
,
22
(
3
), pp.
401
419
.
26.
Shyy
,
W.
, and
Liu
,
H.
,
2007
, “
Flapping Wings and Aerodynamic Lift: The Role of Leading-Edge Vortices
,”
AIAA J.
,
45
(
12
), pp.
2817
2819
.
27.
Heathcote
,
S.
,
Wang
,
Z.
, and
Gursul
,
I.
,
2008
, “
Effect of Spanwise Flexibility on Flapping Wing Propulsion
,”
J. Fluids Struct.
,
24
(
2
), pp.
183
199
.
28.
Zhao
,
L.
,
Huang
,
Q.
,
Deng
,
X.
, and
Sane
,
S. P.
,
2010
, “
Aerodynamic Effects of Flexibility in Flapping Wings
,”
J. R. Soc. Interface
,
7
(
44
), pp.
485
497
.
29.
Gopalakrishnan
,
P.
, and
Tafti
,
D. K.
, “
Effect of Wing Flexibility on Lift and Thrust Production in Flapping Flight
,”
AIAA J.
,
48
(
5
), pp.
865
877
.
30.
Kang
,
C.-K.
,
Aono
,
H.
,
Cesnik
,
C. E. S.
, and
Shyy
,
W.
,
2011
, “
Effects of Flexibility on the Aerodynamic Performance of Flapping Wings
,”
J. Fluid Mech.
,
689
, pp.
32
74
.
31.
Heathcote
,
S.
, and
Gursul
,
I.
,
2007
, “
Flexible Flapping Airfoil Propulsion at Low Reynolds Numbers
,”
AIAA J.
,
45
(
5
), pp.
1066
1079
.
32.
Wu
,
J.
,
Wu
,
J.
,
Tian
,
F.-B.
,
Zhao
,
N.
, and
Li
,
Y.-D.
,
2015
, “
How a Flexible Tail Improves the Power Extraction Efficiency of a Semi-Activated Flapping Foil System: A Numerical Study
,”
J. Fluids Struct.
,
54
, pp.
886
899
.
33.
Siala
,
F.
, and
Liburdy
,
J. A.
,
2015
, “
Energy Harvesting of a Heaving and Forward Pitching Wing With a Passively Actuated Trailing Edge
,”
J. Fluids Struct.
,
57
, pp.
1
14
.
34.
Liu
,
W.
,
Xiao
,
Q.
, and
Cheng
,
F.
,
2013
, “
A Bio-Inspired Study on Tidal Energy Extraction With Flexible Flapping Wings
,”
Bioinspir. Biomim.
,
8
(
3
), p.
36011
.
35.
Bandyopadhyay
,
P. R.
,
2016
, “
Swimming and Flying in Nature—The Route Toward Applications: The Freeman Scholar Lecture
,”
ASME J. Fluids Eng.
,
131
(
3
), p.
031801
.
36.
Zhao
,
L.
,
Deng
,
X.
, and
Sane
,
S. P.
,
2011
, “
Modulation of Leading Edge Vorticity and Aerodynamic Forces in Flexible Flapping Wings
,”
Bioinspir. Biomim.
,
6
(
3
), p.
36007
.
37.
Shoele
,
K.
, and
Zhu
,
Q.
,
2012
, “
Leading Edge Strengthening and the Propulsion Performance of Flexible Ray Fins
,”
J. Fluid Mech.
,
693
, pp.
402
432
.
38.
Gursul
,
I.
,
Wang
,
Z.
, and
Vardaki
,
E.
,
2007
, “
Review of Flow Control Mechanisms of Leading-Edge Vortices
,”
Prog. Aerosp. Sci.
,
43
(
7
), pp.
246
270
.
39.
Lai
,
J. C. S.
, and
Platzer
,
M. F.
,
1999
, “
Jet Characteristics of a Plunging Airfoil
,”
AIAA J.
,
37
(
12
), pp.
1529
1537
.
40.
Lua
,
K. B.
,
Lim
,
T. T.
,
Yeo
,
K. S.
, and
Oo
,
G. Y.
,
2007
, “
Wake-Structure Formation of a Heaving Two-Dimensional Elliptic Airfoil
,”
AIAA J.
,
45
(
7
), pp.
1571
1583
.
41.
von Ellenrieder
,
K. D.
, and
Pothos
,
S.
,
2008
, “
PIV Measurements of the Asymmetric Wake of a Two Dimensional Heaving Hydrofoil
,”
Exp. Fluids
,
44
(
5
), pp.
733
745
.
42.
Lewin
,
G. C.
, and
Haj-Hariri
,
H.
,
2003
, “
Modelling Thrust Generation of a Two-Dimensional Heaving Airfoil in a Viscous Flow
,”
J. Fluid Mech.
,
492
, pp.
339
362
.
43.
Koochesfahani
,
M. M.
,
1989
, “
Vortical Patterns in the Wake of an Oscillating Airfoil
,”
AIAA J.
,
27
(
9
), pp.
1200
1205
.
44.
Young
,
J.
, and
Lai
,
J. C. S.
,
2004
, “
Oscillation Frequency and Amplitude Effects on the Wake of a Plunging Airfoil
,”
AIAA J.
,
42
(
10
), pp.
2042
2052
.
45.
Westerweel
,
J.
,
2008
, “
On Velocity Gradients in PIV Interrogation
,”
Exp. Fluids
,
44
(
5
), pp.
831
842
.
46.
Zhou
,
J.
,
Adrian
,
R. J.
,
Balachandar
,
S.
, and
Kendall
,
T. M.
,
1999
, “
Mechanisms for Generating Coherent Packets of Hairpin Vortices in Channel Flow
,”
J. Fluid Mech.
,
387
, pp.
353
396
.
47.
Adrian
,
R. J.
,
Christensen
,
K. T.
, and
Liu
,
Z.-C.
,
2000
, “
Analysis and Interpretation of Instantaneous Turbulent Velocity Fields
,”
Exp. Fluids
,
29
(
3
), pp.
275
290
.
48.
Hussain
,
A. K. M. F.
, and
Reynolds
,
W. C.
,
1970
, “
The Mechanics of an Organized Wave in Turbulent Shear Flow
,”
J. Fluid Mech.
,
41
(
02
), pp.
241
258
.
49.
Patil
,
V. A.
, and
Liburdy
,
J. A.
,
2013
, “
Flow Structures and Their Contribution to Turbulent Dispersion in a Randomly Packed Porous Bed Based on Particle Image Velocimetry Measurements
,”
Phys. Fluids
,
25
(
11
), p.
113303
.
50.
Dong
,
H.
,
Mittal
,
R.
, and
Najjar
,
F. M.
,
2006
, “
Wake Topology and Hydrodynamic Performance of Low-Aspect-Ratio Flapping Foils
,”
J. Fluid Mech.
,
566
, pp.
309
343
.
51.
Wong
,
J. G.
, and
Rival
,
D. E.
,
2015
, “
Determining the Relative Stability of Leading-Edge Vortices on Nominally Two-Dimensional Flapping Profiles
,”
J. Fluid Mech.
,
766
, pp.
611
625
.
52.
Panda
,
J.
, and
Zaman
,
K.
,
1994
, “
Experimental Investigation of the Flow Field of an Oscillating Airfoil and Estimation of Lift From Wake Surveys
,”
J. Fluid Mech.
,
265
, pp.
65
95
.
53.
Rival
,
D.
,
Prangemeier
,
T.
, and
Tropea
,
C.
,
2009
, “
The Influence of Airfoil Kinematics on the Formation of Leading-Edge Vortices in Bio-Inspired Flight
,”
Exp. Fluids
,
46
(
5
), pp.
823
833
.
54.
Hussain
,
A. K. M. F.
,
1983
, “
Coherent Structures—Reality and Myth
,”
Phys. Fluids
,
26
(
10
), pp.
2816
2850
.
55.
Sarkar
,
A.
, and
Schlüter
,
J.
,
2013
, “
Numerical Investigation of the Turbulent Energy Budget in the Wake of Freely Oscillating Elastically Mounted Cylinder at Low Reduced Velocities
,”
J. Fluids Struct.
,
43
, pp.
441
462
.
56.
Tennekes
,
H.
, and
Lumley
,
J. L.
,
1972
,
A First Course in Turbulence
,
MIT Press
,
Cambridge, MA
.
You do not currently have access to this content.