Recent rapid development of industrial usage of carbon nanotubes (CNTs) has raised health concerns as these engineered elongated particles resemble the appearance of asbestos, which is a well-known inhalation hazard. While CNTs have elongated rod shaped structure similar to asbestos, they are nanosized, and therefore, their motions are strongly affected by Brownian diffusion. The available studies in this area are rather limited and details of the nanofiber dynamics along the transport route are largely unknown. In this study, the CNTs were modeled as elongated ellipsoids and their full motions including the coupled translational and rotational movement in the human tracheobronchial first airway bifurcation were analyzed. Particular attention was given to the effects of the slip-correction and Brownian motion, which are critical to the accuracy of the modeling of motions of nanoscale CNTs in free molecular and transition regimes.

References

References
1.
Invernizzi
,
N.
,
2011
, “
Nanotechnology Between the Lab and the Shop Floor: What are the Effects on Labor?
,”
J. Nanopart. Res.
,
13
(
6
), pp.
2249
2268
.
2.
Schubauer-Berigan
,
M. K.
,
Dahm
,
M. M.
, and
Yenchen
,
M. S.
,
2011
, “
Engineered Carbonaceous Nanomaterials Manufacturers in the United States: Workforce Size, Characteristics, and Feasibility of Epidemiologic Studies
,”
J. Occup. Environ. Med.
,
53
(
Suppl. 6
), pp.
S62
S67
.
3.
Service
,
R. F.
,
1998
, “
Nanotubes: The Next Asbestos?
,”
Science
,
281
(
5379
), pp.
941
942
.
4.
Lam
,
C. W.
,
James
,
J. T.
,
McClusjey
,
R.
, and
Hunter
,
R. L.
,
2004
, “
Pulmonary Toxicity of Single-Wall Carbon Nanotubes in Mice 7 and 90 days After Intratracheal Instillation
,”
Toxical Sci.
,
77
(
1
), pp.
126
134
.
5.
Murray
,
A. R.
,
Kisin
,
E. R.
,
Tkach
,
A. V.
,
Yanamala
,
N.
,
Mercer
,
R.
,
Young
,
S. H.
,
Fadeel
,
B.
,
Kagan
,
V. E.
, and
Shvedo-va
,
A. A.
,
2012
, “
Factoring in Agglomeration of Carbon Nanotubes and Nanofibers for Better Prediction of Their Toxicity Versus Asbestos
,”
Part. Fibre Toxicol.
,
9
(
1
), pp.
10
28
.
6.
Ma-Hock
,
L.
,
Treumann
,
S.
,
Strauss
,
V.
,
Brill
,
S.
,
Luizi
,
F.
,
Mertler
,
M.
,
Wiench
,
K.
,
Gamer
,
A. O.
,
Ravenz-waay
,
B.
, and
Landsiedel
,
R.
,
2009
, “
Inhalation Toxicity of Multi-Wall Carbon Nanotubes in Rats Exposed for 3 Months
,”
Toxicol. Sci.
,
112
(
2
), pp.
468
481
.
7.
Mercer
,
R.
,
Scabilloni
,
J.
,
Wang
,
L.
,
Kisin
,
E.
,
Murray
,
A. D.
,
Shvedova
,
A. A.
, and
Castranova
,
A. V.
,
2008
, “
Alteration of Deposition Patterns and Pulmonary Response as a Result Of Improved Dispersion of Aspirated Single-Walled Carbon Nanotubes in a Mouse Model
,”
Am. J. Physiol. Lung Cell. Mol. Physiol.
,
294
(
1
), pp.
L87
L97
.
8.
Poland
,
C. A.
,
Duffin
,
R.
,
Kinloch
,
I.
,
Maynard
,
A.
,
Wallace
,
WAH.
,
Seaton
,
A.
,
Stone
,
V.
,
Brown
,
S.
,
MaCnee
,
W.
, and
Donaldson
,
K.
,
2008
, “
Carbon Nanotubes Introduced Into the Abdominal Cavity of Mice Show Asbestos-Like Pathogenicity in a Pilot Study
,”
Nat. Nanotechnol.
,
3
(
7
), pp.
423
428
.
9.
Murphy
,
F. A.
,
Poland
,
C. A.
,
Duffin
,
R.
,
Al-Jamal
,
K. T.
,
Ali-Boucetta
,
H.
,
Nunes
,
A.
,
Byrne
,
F.
,
Prina-Mello
,
A.
,
Volkov
,
Y.
,
Li
,
S.
,
Mather
,
S. J.
,
Bianco
,
A.
,
Prato
,
M.
,
Macnee
,
W.
,
Wallace
,
W. A.
,
Kostarelos
,
K.
, and
Donaldson
,
K.
,
2011
, “
Length-Dependent Retention of Carbon Nanotubes in the Pleural Space of Mice Initiates Sustained Inflammation and Progressive Fibrosis on the Parietal Pleura
,”
Am. J. Pathol.
,
178
(
6
), pp.
2587
2600
.
10.
Stanton
,
M. F.
,
Laynard
,
M.
,
Tegeris
,
A.
,
Miller
,
E.
,
May
,
M.
, and
Kent
,
E.
,
1977
, “
Carcinogenicity of Fibrous Glass: Pleural Response in the Rat in Relation to Fiber Dimension
,”
J. Natl. Cancer Inst.
,
58
, pp.
587
603
.
11.
Stanton
,
M. F.
,
Laynard
,
M.
,
Tegeris
,
A.
,
Miller
,
E.
,
May
,
M.
,
Morgan
,
E.
, and
Smith
,
A.
,
1981
, “
Relation of Particle Dimension to Carcinogenicity in AmPhibole Asbestoses and Other Fibrous Minerals
,”
J. Natl. Cancer Inst.
,
67
, pp.
965
975
.
12.
Lippmann
,
M.
,
1988
, “
Asbestos Exposure Indices
,”
Environ. Res.
,
46
(
1
), pp.
86
106
.
13.
Lippmann
,
M.
,
1990
, “
Effects of Fiber Characteristics on Lung Deposition, Retention, and Disease
,”
Environ. Health Perspect.
,
88
(8), pp.
311
317
.
14.
Berman
,
D. W.
,
Crump
,
K. S.
,
Chatfield
,
E. J.
,
Davis
,
J. M. G.
, and
Jones
,
A. D.
,
1995
, “
The Sizes, Shapes, and Mineralogy of Asbestos Structures That Induce Lung Tumors or Mesothelioma in AF/HAN Rats Following Inhalation
,”
Risk Anal.
,
15
(
2
), pp.
181
195
.
15.
Su
,
W.
, and
Cheng
,
Y. S.
,
2005
, “
Deposition of Fibers in the Human Nasal Airway
,”
Aerosol Sci. Technol.
,
39
(
9
), pp.
888
901
.
16.
Zhou
,
Y.
,
Su
,
W.-C.
, and
Cheng
,
Y. S.
,
2007
, “
Fiber Deposition in the Tracheabronhical Region: Experimental Measurements
,”
Inhalation Toxicol.
,
19
(
13
), pp.
1071
1078
.
17.
Myojo
,
T.
,
1987
, “
Deposition of Fibrous Aerosol in Model Bifurcating Tubes
,”
J. Aerosol Sci.
,
18
(
3
), pp.
337
347
.
18.
Sussman
,
R. G.
,
Cohen
,
B. S.
, and
Lippmann
,
M.
,
1991
, “
Asbestos Fiber Deposition in Human Tracheobronchial Cast. II. Empirical Model
,”
Inhalation Toxicol.
,
3
(
2
), pp.
161
178
.
19.
NIOSH
,
2011
, “
Current Intelligence Bulletin 62: Asbestos Fibers and Other Elongate Mineral Particles: State of the Science and Roadmap for Research
,” Report No. CIT 62.
20.
Jeffery
,
G. B.
,
1922
, “
The Motion of Ellipsoidal Particles Immersed in a Viscous Fluid
,”
Proc. R. Soc. A
,
102
(
715
), pp.
161
179
.
21.
Gallily
,
I.
, and
Eisner
,
A. D.
,
1979
, “
On the Orderly Nature of the Motion of Nonspherical Aerosol Particle I. Deposition From a Laminar Flows
,”
J. Colloid Interface Sci.
,
68
(
2
), pp.
320
337
.
22.
Chen
,
Y. K.
, and
Yu
,
C. P.
,
1991
, “
Sedimentation of Fibers From Laminar Flows in a Horizontal Circular Duct
,”
Aerosol Sci. Technol.
,
14
(
3
), pp.
343
347
.
23.
Fan
,
F. G.
, and
Ahmadi
,
G.
,
1995
, “
A Sublayer Model for Wall Deposition of Ellipsoidal Particles in Turbulent Streams
,”
J. Aerosol Sci.
,
26
, pp.
831
840
.
24.
Fan
,
F. G.
, and
Ahmadi
,
G.
,
1995
, “
Dispersion of Ellipsoidal Particles in an Isotropic Pseudo-Turbulent Flow Field
,”
ASME J. Fluids Eng.
,
117
(
1
), pp.
154
161
.
25.
Tian
,
L.
,
Ahmadi
,
G.
,
Wang
,
Z. C.
, and
Hopke
,
P. K.
,
2012
, “
Transport and Deposition of Ellipsoidal Fibers in Low Reynolds Number Flows
,”
J. Aerosol Sci.
,
45
(3), pp.
1
18
.
26.
Asgharian
,
B.
, and
Yu
,
C. P.
,
1988
, “
Deposition of Inhaled Fibrous Particles in the Human Lung
,”
J. Aerosol Med.
,
1
(
1
), pp.
37
50
.
27.
Asgharian
,
B.
, and
Anijilvel
,
S.
,
1995
, “
Movement and Deposition of Fibers in an Airway With Steady Viscous Flow
,”
Aerosol Sci. Technol.
,
22
(
3
), pp.
261
270
.
28.
Dahneke
,
B. E.
,
1973
, “
Slip Correction Factors For Nonspherical Bodies—III. The Form of the General Law
,”
Aerosol Sci.
,
4
(
2
), pp.
163
170
.
29.
Zhang
,
C.
,
Thajudeen
,
T.
,
Larriba
,
C.
,
Schwartzentruber
,
T. E.
, and
Hogan
,
C. J.
, Jr.
,
2012
, “
Determination of the Scalar Friction Factor for Nonspherical Particles and Aggregates across the Entire Knudsen Number Range by Direct Simulation Monte Carlo (DSMC)
,”
Aerosol Sci. Technol.
,
46
(
10
), pp.
1065
1078
.
30.
Gopalakrishnan
,
G.
,
McMurry
,
P. H.
, and
Hogan
,
C. J.
, Jr
.,
2015
, “
The Electrical Mobilities and Scalar Friction Factors of Modest-to-High Aspect Ratio Particles in the Transition Regime
,”
J. Aerosol Sci.
,
82
(4), pp.
24
39
.
31.
Zhang
,
Z.
,
Kleinstreuer
,
C.
, and
Kim
,
C. S.
,
2001
, “
Flow Structure and Particle Transport in a Triple Bifurcation Airway Model
,”
ASME J. Fluids Eng.
,
123
(
2
), pp.
320
330
.
32.
Tian
,
L.
, and
Ahmadi
,
G.
,
2012
, “
Transport and Deposition of Micro-and Nano-Particles in Human Tracheobronchial Tree by an Asymmetric Multi-Level Bifurcation Model
,”
J. Comput. Multiphase Flows
,
4
(
2
), pp.
159
182
.
33.
Farag
,
A.
,
Hammersley
,
J.
,
Olson
,
D.
, and
Ng
,
T.
,
2000
, “
Mechanics of the Flow in the Small and Middle Human Airways
,”
ASME J. Fluids Eng.
,
122
(
3
), pp.
576
584
.
34.
Walter
,
D. K.
, and
Luke
,
W. H.
,
2010
, “
A Method for Three-Dimensional Navier–Stokes Simulations of Large-Scale Regions of the Human Lung Airway
,”
ASME J. Fluids Eng.
,
132
(
5
), p.
051101
.
35.
Chhabra
,
S.
, and
Prasad
,
A. K.
,
2011
, “
Flow and Particle Dispersion in Lung Acini: Effect of Geometric and Dynamic Parameters During Synchronous Ventilation
,”
ASME J. Fluids Eng.
,
133
(
7
), p.
071001
.
36.
Tian
,
L.
, and
Ahmadi
,
G.
,
2013
, “
Fiber Transport and Deposition in Human Upper Tracheobroncial Airways
,”
J. Aerosol Sci.
,
60
, pp.
1
20
.
37.
Dastan
,
A.
,
Abouali
,
O.
, and
Ahmadi
,
G.
,
2014
, “
CFD Simulation of Total and Regional Fiber Deposition in Human Nasal Cavities
,”
J. Aerosol Sci.
,
69
, pp.
132
149
.
38.
Feng
,
Y.
, and
Kleinstreuer
,
C.
,
2013
, “
Analysis of Non-Spherical Particle Transport in Complex Internal Shear Flows
,”
Phys. Fluids
,
25
(
9
), pp.
1
26
.
39.
Hogberg
,
S. M.
,
Åkerstedt
,
H. O.
,
Holmstedt
,
E.
,
Lundström
,
T. S.
, and
Sandström
,
T.
,
2012
, “
Time-Dependent Deposition of Micro- and Nanofibers in Straight Model Airways
,”
ASME J. Fluids Eng.
,
134
(
5
), p.
051208
.
40.
Tian
,
L.
, and
Ahmadi
,
G.
,
2016
, “
Transport and Deposition of Nano-Fibers in Human Upper Tracheobroncial Airways
,”
J. Aerosol Sci.
,
91
(1), pp.
22
32
.
41.
ANSYS,
1998
, “
FLUENT User's Guide
,” ANSYS, Lebanon, NH.
42.
Phillips
,
C. G.
, and
Kaye
,
S. R.
,
1997
, “
On the Asymmetry of Bifurcations in the Bronchial Tree
,”
Respir. Physiol.
,
107
(
1
), pp.
85
98
.
43.
Heistracher
,
T.
, and
Hofmann
,
W.
,
1995
, “
Physiological Realistic Models of Bronchial Airway Bifurcations
,”
J. Aerosol Sci.
,
26
(
3
), pp.
497
509
.
44.
Tian
,
L.
, and
Ahmadi
,
G.
,
2007
, “
Particle Deposition in Turbulent Duct Flows—Comparisons of Different Model Predications
,”
J. Aerosol Sci.
,
38
(
4
), pp.
377
397
.
45.
Launder
,
B. E.
,
Reece
,
G. J.
, and
Rodi
,
W.
,
1975
, “
Progress in the Development of a Reynolds-Stress Turbulent Closure
,”
J. Fluid Mech.
,
68
(
Part 3
), pp.
537
566
.
46.
He
,
C.
, and
Ahmadi
,
G.
,
1999
, “
Particle Deposition in a Nearly Developed Turbulent Duct Flow With Electrophoresis
,”
J. Aerosol Sci.
,
30
(
6
), pp.
739
758
.
47.
Jones
,
W. P.
, and
Launder
,
B. E.
,
1973
, “
The Calculation of Low Reynolds Number Phenomena With a Two-Equation Model of Turbulence
,”
Int. J. Mass Heat Transfer
,
16
(
6
), pp.
1119
1130
.
48.
Brenner
,
H.
,
1964
, “
The Stokes Resistance of an Arbitrary Particle—IV. Arbitrary Fields of Flow
,”
Chem. Eng. Sci.
,
19
(
10
), pp.
703
727
.
49.
Oseen
,
C. W.
,
1927
, “
Neuere Methoden und Ergebniss in der Hydrodynamik Akademische Verlagsgesellshaf
,” Leipzig, Germany.
50.
Fan
,
F. G.
, and
Ahmadi
,
G.
,
2000
, “
Wall Deposition of Small Ellipsoids From Turbulent Air Flows—A Brownian Dynamics Simulation
,”
J. Aerosol Sci.
,”
31
(
10
), pp.
1205
1229
.
51.
Goldstein
,
H.
,
1980
,
Classical Mechanics
,
2nd ed.
,
Addison-Wesley
,
Reading, MA
.
52.
Hughes
,
P. C.
,
1986
,
Spacecraft Attitude Dynamics
,
Wiley
,
New York
.
53.
Uhlenbeck
,
G. E.
, and
Ornstein
,
L. S.
,
1930
, “
On the Theory of Brownian Motion
,”
Phys. Rev.
,
36
(
5
), pp.
823
841
.
54.
Chandrasekhar
,
S.
,
1943
, “
Stochastic Problems in Physics and Astronomy
,”
Rev. Mod. Phys.
,
15
(
1
), pp.
1
89
.
55.
Ounis
,
H.
,
Ahmadi
,
G.
, and
McLaughlin
,
J. B.
,
1991
, “
Brownian Diffusion of Submicrometer Particles in the Viscous Sublayer
,”
J. Colloid Interface Sci.
,
143
(
1
), pp.
266
277
.
56.
Gupta
,
D.
, and
Peters
,
M.
,
1985
, “
A Brownian Dynamics Simulation of Aerosol Deposition Onto Spherical Collectors
,”
J. Colloid Interface Sci.
,
104
(
2
), pp.
375
389
.
57.
Gallily
,
I.
, and
Cohen
,
A. H.
,
1979
, “
On the Orderly Nature of the Motion of Nonspherical Aerosol Particles II. Inertial Collision Between A Spherical Large Droplet and Axially Symmetrical Elongated Particle
,”
J. Colloid Interface Sci.
,
68
(
2
), pp.
338
356
.
58.
Gans
,
R.
,
1928
, “
Zur Theorie der Brownschen Molekularbewegung
,”
Ann. Phys.
,
391
, pp.
628
656
.
59.
Eisner
,
A. D.
, and
Gallily
,
I.
,
1981
, “
On the Stochastic Nature of the Motion of Nonspherical Aerosol Particles III. The Rotational Diffusion Diadic and Applications
,”
J. Colloid Interface Sci.
,
81
(
1
), pp.
214
233
.
60.
Tavakol
,
M. M.
,
Abouali
,
O.
,
Yaghoubi
,
M.
, and
Ahmadi
,
G.
,
2015
, “
Dispersion and Deposition of Ellipsoidal Particles in a Fully Developed Laminar Pipe Flow Using Non-Creeping Formulations for Hydrodynamic Forces and Torques
,”
Int. J. Multiphase Flow
,
75
(10), pp.
54
67
.
You do not currently have access to this content.