Temperature effects on the critical cavitation number and rotating cavitation in a turbopump inducer have been experimentally investigated in water. Static pressures upstream and downstream of the inducer have been measured to determine the cavitation performance, and cavitation instabilities have been detected using unsteady pressure sensors and a high-speed camera. Two kinds of cavitation instabilities have been identified—rotating cavitation and asymmetric attached cavitation. To quantify temperature effects, nondimensional thermal parameter has been adopted. Increasing water temperature, or increasing nondimensional thermal parameter, lowers the critical cavitation number. Increasing nondimensional thermal parameter also shifts the onset of rotating cavitation to a lower cavitation number and reduces the intensity of rotating cavitation. However, for values larger than 0.540 (340 K, 5000 rpm), the critical cavitation number and the rotating cavitation onset cavitation number become independent of the nondimensional thermal parameter. The onset of the head coefficient degradation correlates with the onset of rotating cavitation regardless of temperature.

References

References
1.
Kamijo
,
K.
,
Shimura
,
T.
, and
Watanabe
,
M.
,
1977
, “
An Experimental Investigation of Cavitating Inducer Instability
,”
ASME
Paper No. 77-WA/FE-14.
2.
Tsujimoto
,
Y.
,
Yoshida
,
Y.
,
Maekawa
,
Y.
,
Watanabe
,
S.
, and
Hashimoto
,
T.
,
1997
, “
Observations of Oscillating Cavitation of an Inducer
,”
ASME J. Fluids Eng.
,
119
(
4
), pp.
775
781
.
3.
Fujii
,
A.
,
Azuma
,
S.
,
Yoshida
,
Y.
,
Tsujimoto
,
Y.
,
Horiguchi
,
H.
, and
Watanabe
,
S.
,
2004
, “
Higher Order Rotating Cavitation in an Inducer
,”
Int. J. Rotating Mach.
,
10
(
4
), pp.
241
251
.
4.
Tsujimoto
,
Y.
, and
Semenov
,
A. Y.
,
2002
, “
New Types of Cavitation Instabilities in Inducers
,”
4th International Conference on Launcher Technology
, Liege, Belgium, Dec. 3–6.
5.
Brennen
,
C. E.
,
1994
,
Hydrodynamics of Pumps
,
Oxford University Press
, Oxford, UK.
6.
Stepanoff
,
A. J.
,
1964
, “
Cavitation Properties of Liquids
,”
ASME J. Eng. Gas Turbines Power
,
86
(
2
), pp.
195
200
.
7.
Franc
,
J. P.
,
Rebattet
,
C.
, and
Coulon
,
A.
,
2004
, “
An Experimental Investigation of Thermal Effects in a Cavitating Inducer
,”
ASME J. Fluids Eng.
,
126
(
5
), pp.
716
723
.
8.
Ruggeri
,
R. S.
, and
Moore
,
R. D.
,
1969
, “
Method for Prediction of Pump Cavitation Performance for Various Liquids, Liquid Temperatures, and Rotative Speeds
,” NASA, Washington, DC, Technical Report No. TN-5292.
9.
Franc
,
J. P.
,
Jason
,
E.
,
Morel
,
P.
,
Rebattet
,
C.
, and
Riondet
,
M.
,
2001
, “
Visualization of Leading Edge Cavitation in an Inducer at Different Temperatures
,”
4th International Symposium on Cavitation, CAV2001
, Pasadena, CA, June 20–23.
10.
Yoshida
,
Y.
,
Sasao
,
Y.
,
Okita
,
K.
,
Hasegawa
,
S.
,
Shimagaki
,
M.
, and
Ikohagi
,
T.
,
2007
, “
Influence of Thermodynamic Effect on Synchronous Rotating Cavitation
,”
ASME J. Fluids Eng.
,
129
(
7
), pp.
871
876
.
11.
Kikuta
,
K.
,
Yoshida
,
Y.
,
Watanabe
,
M.
,
Hashimoto
,
T.
,
Nagaura
,
K.
, and
Ohira
,
K.
,
2008
, “
Thermodynamic Effect on Cavitation Performances and Cavitation Instabilities in an Inducer
,”
ASME J. Fluids Eng.
,
130
(
11
), p.
111302
.
12.
Yoshida
,
Y.
,
Sasao
,
Y.
,
Watanabe
,
M.
,
Hashimoto
,
T.
,
Iga
,
Y.
, and
Ikohagi
,
T.
,
2009
, “
Thermodynamic Effect on Rotating Cavitation in an Inducer
,”
ASME J. Fluids Eng.
,
131
(
9
), p.
091302
.
13.
Yoshida
,
Y.
,
Nanri
,
H.
,
Kikuta
,
K.
,
Kazami
,
Y.
,
Iga
,
Y.
, and
Ikohagi
,
T.
,
2011
, “
Thermodynamic Effect on Subsynchronous Rotating Cavitation and Surge Mode Oscillation in a Space Inducer
,”
ASME J. Fluids Eng.
,
133
(
6
), p.
061301
.
14.
Kikuta
,
K.
,
Yoshida
,
Y.
,
Hashimoto
,
T.
,
Nanri
,
H.
,
Mizuno
,
T.
, and
Shimiya
,
N.
,
2009
, “
Influence of Rotational Speed on Thermodynamic Effect in a Cavitating Inducer
,”
ASME
Paper No. FEDSM2009-78083.
15.
Cervone
,
A.
,
Testa
,
R.
,
Bramanti
,
C.
,
Rapposelli
,
E.
, and
d'Agostino
,
L.
,
2005
, “
Thermal Effects on Cavitation Instabilities in Helical Inducers
,”
J. Propul. Power
,
21
(
5
), pp.
893
899
.
16.
Torre
,
L.
,
Cervone
,
A.
,
Pasini
,
A.
, and
d'Agostino
,
L.
,
2011
, “
Experimental Characterization of Thermal Cavitation Effects on Space Rocket Axial Inducers
,”
ASME J. Fluids Eng.
,
133
(
11
), p.
111303
.
17.
Cooper
,
P.
,
1967
, “
Analysis of Single and Two-Phase Flows in Turbopump Inducers
,”
ASME J. Eng. Gas Turbines Power
,
89
(
4
), pp.
577
586
.
18.
Watanabe
,
S.
,
Hidaka
,
T.
,
Horiguchi
,
H.
,
Furukawa
,
A.
, and
Tsujimoto
,
Y.
,
2007
, “
Steady Analysis of the Thermodynamic Effect of Partial Cavitation Using the Singularity Method
,”
ASME J. Fluids Eng.
,
129
(
2
), pp.
121
127
.
19.
Watanabe
,
S.
,
Hidaka
,
T.
,
Horiguchi
,
H.
,
Furukawa
,
A.
, and
Tsujimoto
,
Y.
,
2007
, “
Analysis of Thermodynamic Effects on Cavitation Instabilities
,”
ASME J. Fluids Eng.
,
129
(
9
), pp.
1123
1130
.
20.
Watanabe
,
S.
,
Furukawa
,
A.
, and
Yoshida
,
Y.
,
2008
, “
Theoretical Analysis of Thermodynamic Effect of Cavitation in Cryogenic Inducer Using Singularity Method
,”
Int. J. Rotating Mach.
,
2008
, p.
125678
.
21.
Tokumasu
,
T.
,
Sekino
,
Y.
, and
Kamijo
,
K.
,
2003
, “
A New Modeling of Sheet Cavitation Considering the Thermodynamic Effects
,”
5th International Symposium on Cavitation
, CAV2003, Osaka, Japan, Nov. 1–4.
22.
Hosangadi
,
A.
, and
Ahuja
,
V.
,
2005
, “
Numerical Study of Cavitation in Cryogenic Fluids
,”
ASME J. Fluids Eng.
,
127
(
2
), pp.
267
281
.
23.
Hosangadi
,
A.
,
Ahuja
,
V.
,
Ungewitter
,
R. J.
, and
Busby
,
J.
,
2007
, “
Analysis of Thermal Effects in Cavitating Liquid Hydrogen Inducers
,”
J. Propul. Power
,
23
(
6
), pp.
1225
1234
.
24.
Gonclaves
,
E.
,
Patella
,
R. F.
,
Rolland
,
J.
,
Pouffary
,
B.
, and
Challier
,
G.
,
2010
, “
Thermodynamic Effect on a Cavitating Inducer in Liquid Hydrogen
,”
ASME J. Fluids Eng.
,
132
(
11
), p.
111305
.
25.
Choi
,
C.
,
Noh
,
J.
,
Kim
,
J.
,
Hong
,
S.
, and
Kim
,
J.
,
2006
, “
Effects of a Bearing Strut on the Performance of a Turbopump Inducer
,”
J. Propul. Power
,
22
(
6
), pp.
1413
1417
.
26.
Fujii
,
A.
,
Azuma
,
S.
,
Uchiumi
,
M.
,
Yoshida
,
Y.
, and
Tsujimoto
,
Y.
,
2003
, “
Unsteady Behavior of Asymmetric Cavitation in a 3-Bladed Inducer
,”
5th International Symposium on Cavitation
, Osaka, Japan, Nov. 1–4.
27.
Horiguchi
,
H.
,
Watanabe
,
S.
, and
Tsujimoto
,
Y.
,
2000
, “
A Linear Stability Analysis of Cavitation in a Finite Blade Count Impeller
,”
ASME J. Fluids Eng.
,
122
(
4
), pp.
798
805
.
You do not currently have access to this content.