This paper investigates the countercurrent gas–liquid flow in an annular gap bubble column with a 0.24 m inner diameter by using experimental and numerical investigations. The two-phase flow is studied experimentally using flow visualizations, gas holdup measurements, and double fiber optical probes in the following range of operating conditions: superficial air velocities up to 0.23 m/s and superficial water velocities up to −0.11 m/s, corresponding to gas holdups up to 29%. The flow visualizations were used to observe the flow patterns and to obtain the bubble size distribution (BSD). The gas holdup measurements were used for investigating the flow regime transitions, and the double fiber optical probes were used to study the local flow phenomena. A computational fluid dynamics (CFD) Eulerian two-fluid modeling of the column operating in the bubbly flow regime is proposed using the commercial software ansys fluent. The three-dimensional (3D) transient simulations have been performed considering a set of nondrag forces and polydispersity. It is shown that the errors in the global holdup and in the local properties are below 7% and 16%, respectively, in the range considered.

References

References
1.
Brooks
,
C. S.
,
Paranjape
,
S. S.
,
Ozar
,
B.
,
Hibiki
,
T.
, and
Ishii
,
M.
,
2012
, “
Two-Group Drift-Flux Model for Closure of the Modified Two-Fluid Model
,”
Int. J. Heat Fluid Flow
,
37
, pp.
196
208
.
2.
Shawkat
,
M. E.
, and
Ching
,
C. Y.
,
2011
, “
Liquid Turbulence Kinetic Energy Budget of Co-Current Bubbly Flow in a Large Diameter Vertical Pipe
,”
ASME J. Fluids Eng.
,
133
(
9
), p.
091303
.
3.
Yamaguchi
,
K.
, and
Yamazaki
,
Y.
,
1982
, “
Characteristics of Counter Current Gas–Liquid Two-Phase Flow in Vertical Tubes
,”
J. Nucl. Sci. Technol.
,
19
(
12
), pp.
985
996
.
4.
Hasan
,
A. R.
,
Kabir
,
C. S.
, and
Srinivasan
,
S.
,
1994
, “
Countercurrent Bubble and Slug Flows in a Vertical System
,”
Chem. Eng. Sci.
,
49
(
16
), pp.
2567
2574
.
5.
Aritomi
,
M.
,
Zhou
,
S.
,
Nakajima
,
M.
,
Takeda
,
Y.
,
Mori
,
M.
, and
Yoshioka
,
Y.
,
1996
, “
Measurement System of Bubbly Flow Using Ultrasonic Velocity Profile Monitor and Video Data Processing Unit
,”
J. Nucl. Sci. Technol.
,
33
(
12
), pp.
915
923
.
6.
Fuangworawong
,
N.
,
Kikura
,
H.
,
Aritomi
,
M.
, and
Komeno
,
T.
,
2007
, “
Tomographic Imaging of Counter-Current Bubbly Flow by Wire Mesh Tomography
,”
Chem. Eng. J.
,
130
(
2–3
), pp.
111
118
.
7.
Ghosh
,
S.
,
Pratihar
,
D. K.
,
Maiti
,
B.
, and
Das
,
P. K.
,
2012
, “
Identification of Flow Regimes Using Conductivity Probe Signals and Neural Networks for Counter-Current Gas–Liquid Two-Phase Flow
,”
Chem. Eng. Sci.
,
84
, pp.
417
436
.
8.
Ghosh
,
S.
,
Pratihar
,
D. K.
,
Maiti
,
B.
, and
Das
,
P. K.
,
2013
, “
Automatic Classification of Vertical Counter-Current Two-Phase Flow by Capturing Hydrodynamic Characteristics Through Objective Descriptions
,”
Int. J. Multiphase Flow
,
52
, pp.
102
120
.
9.
Youssef Ahmed
,
A.
,
Al-Dahhan Muthanna
,
H.
, and
Dudukovic Milorad
,
P.
,
2013
, “
Bubble Columns With Internals: A Review
,”
Int. J. Chem. React. Eng.
,
11
(
1
), pp.
169
223
.
10.
Al-Oufi
,
F. M.
,
Cumming
,
I. W.
, and
Rielly
,
C. D.
,
2010
, “
Destabilisation of Homogeneous Bubbly Flow in an Annular Gap Bubble Column
,”
Can. J. Chem. Eng.
,
88
(
4
), pp.
482
490
.
11.
Julia
,
J. E.
,
Ozar
,
B.
,
Dixit
,
A.
,
Jeong
,
J.-J.
,
Hibiki
,
T.
, and
Ishii
,
M.
,
2009
, “
Axial Development of Flow Regime in Adiabatic Upward Two-Phase Flow in a Vertical Annulus
,”
ASME J. Fluids Eng.
,
131
(
2
), p.
021302
.
12.
Das
,
G.
,
Das
,
P. K.
,
Purohit
,
N. K.
, and
Mitra
,
A. K.
,
1999
, “
Flow Pattern Transition During Gas Liquid Upflow Through Vertical Concentric Annuli—Part I: Experimental Investigations
,”
ASME J. Fluids Eng.
,
121
(
4
), pp.
895
901
.
13.
Besagni
,
G.
,
Guédon
,
G.
, and
Inzoli
,
F.
,
2014
, “
Experimental Investigation of Counter Current Air–Water Flow in a Large Diameter Vertical Pipe With Inners
,”
J. Phys.: Conf. Ser.
,
547
(
1
), p.
012024
.
14.
Ziegenhein
,
T.
,
Rzehak
,
R.
, and
Lucas
,
D.
,
2015
, “
Transient Simulation for Large Scale Flow in Bubble Columns
,”
Chem. Eng. Sci.
,
122
(
27
), pp.
1
13
.
15.
Masood
,
R. M. A.
, and
Delgado
,
A.
,
2014
, “
Numerical Investigation of the Interphase Forces and Turbulence Closure in 3D Square Bubble Columns
,”
Chem. Eng. Sci.
,
108
, pp.
154
168
.
16.
Laborde-Boutet
,
C.
,
Larachi
,
F.
,
Dromard
,
N.
,
Delsart
,
O.
, and
Schweich
,
D.
,
2009
, “
CFD Simulation of Bubble Column Flows: Investigations on Turbulence Models in RANS Approach
,”
Chem. Eng. Sci.
,
64
(
21
), pp.
4399
4413
.
17.
Masood
,
R. M. A.
,
Khalid
,
Y.
, and
Delgado
,
A.
,
2015
, “
Scale Adaptive Simulation of Bubble Column Flows
,”
Chem. Eng. J.
,
262
, pp.
1126
1136
.
18.
Masood
,
R. M. A.
,
Rauh
,
C.
, and
Delgado
,
A.
,
2014
, “
CFD Simulation of Bubble Column Flows: An Explicit Algebraic Reynolds Stress Model Approach
,”
Int. J. Multiphase Flow
,
66
, pp.
11
25
.
19.
Zhang
,
D.
,
Deen
,
N. G.
, and
Kuipers
,
J. A. M.
,
2006
, “
Numerical Simulation of the Dynamic Flow Behavior in a Bubble Column: A Study of Closures for Turbulence and Interface Forces
,”
Chem. Eng. Sci.
,
61
(
23
), pp.
7593
7608
.
20.
Ziegenhein
,
T.
,
Lucas
,
D.
,
Rzehak
,
R.
, and
Krepper
,
E.
,
2013
, “
Closure Relations for CFD Simulation of Bubble Columns
,”
8th International Conference on Multiphase Flow, ICMF 2013
, Jeju, Korea, May 26–31, pp.
1
11
.
21.
Pourtousi
,
M.
,
Sahu
,
J. N.
, and
Ganesan
,
P.
,
2014
, “
Effect of Interfacial Forces and Turbulence Models on Predicting Flow Pattern Inside the Bubble Column
,”
Chem. Eng. Process.
,
75
, pp.
38
47
.
22.
Tabib
,
M. V.
,
Roy
,
S. A.
, and
Joshi
,
J. B.
,
2008
, “
CFD Simulation of Bubble Column—An Analysis of Interphase Forces and Turbulence Models
,”
Chem. Eng. J.
,
139
(
3
), pp.
589
614
.
23.
Besagni
,
G.
, and
Inzoli
,
F.
,
2015
, “
Role of Interfacial Forces in Bubble Column Simulations
,”
33rd UIT Heat Transfer Conference
, L'Aquila, Italy, June 22–24.
24.
Reilly
,
I.
,
Scott
,
D.
,
Debruijn
,
T.
, and
MacIntyre
,
D.
,
1994
, “
The Role of Gas Phase Momentum in Determining Gas Holdup and Hydrodynamic Flow Regimes in Bubble Column Operations
,”
Can. J. Chem. Eng.
,
72
(
1
), pp.
3
12
.
25.
Aloufi
,
F. M.
,
2011
, “
An Investigation of Gas Void Fraction and Transition Conditions for Two-Phase Flow in an Annular Gap Bubble Column
,” Ph.D. thesis, Loughborough University, Loughborough, UK.
26.
Honkanen
,
M.
,
Saarenrinne
,
P.
,
Stoor
,
T.
, and
Niinimäki
,
J.
,
2005
, “
Recognition of Highly Overlapping Ellipse-Like Bubble Images
,”
Meas. Sci. Technol.
,
16
(
9
), pp.
1760
1770
.
27.
Lage
,
P. L. C.
, and
Espósito
,
R. O.
,
1999
, “
Experimental Determination of Bubble Size Distributions in Bubble Columns: Prediction of Mean Bubble Diameter and Gas Hold Up
,”
Powder Technol.
,
101
(
2
), pp.
142
150
.
28.
Wongsuchoto
,
P.
,
Charinpanitkul
,
T.
, and
Pavasant
,
P.
,
2003
, “
Bubble Size Distribution and Gas–Liquid Mass Transfer in Airlift Contactors
,”
Chem. Eng. J.
,
92
(
1–3
), pp.
81
90
.
29.
Rakoczy
,
R.
, and
Masiuk
,
S.
,
2009
, “
Experimental Study of Bubble Size Distribution in a Liquid Column Exposed to a Rotating Magnetic Field
,”
Chem. Eng. Process.
,
48
(
7
), pp.
1229
1240
.
30.
Hanselmann
,
W.
, and
Windhab
,
E.
,
1998
, “
Flow Characteristics and Modelling of Foam Generation in a Continuous Rotor/Stator Mixer
,”
J. Food Eng.
,
38
(
4
), pp.
393
405
.
31.
Passos
,
A. D.
,
Voulgaropoulos
,
V. P.
,
Paras
,
S. V.
, and
Mouza
,
A. A.
,
2015
, “
The Effect of Surfactant Addition on the Performance of a Bubble Column Containing a Non-Newtonian Liquid
,”
Chem. Eng. Res. Des.
,
95
, pp.
93
104
.
32.
Boes
,
R. M.
, and
Hager
,
W. H.
,
1998
, “
Fiber-Optical Experimentation in Two-Phase Cascade Flow
,”
International RCC Dams Seminar
, K. Hansen, ed., Denver, pp.
1
13
.
33.
Barrau
,
E.
,
Rivière
,
N.
,
Poupot
,
C.
, and
Cartellier
,
A.
,
1999
, “
Single and Double Optical Probes in Air–Water Two-Phase Flows: Real Time Signal Processing and Sensor Performance
,”
Int. J. Multiphase Flow
,
25
(
2
), pp.
229
256
.
34.
Simonnet
,
M.
,
Gentric
,
C.
,
Olmos
,
E.
, and
Midoux
,
N.
,
2007
, “
Experimental Determination of the Drag Coefficient in a Swarm of Bubbles
,”
Chem. Eng. Sci.
,
62
(
3
), pp.
858
866
.
35.
Vejražka
,
J.
,
Večeř
,
M.
,
Orvalho
,
S.
,
Sechet
,
P.
,
Ruzicka
,
M. C.
, and
Cartellier
,
A.
,
2010
, “
Measurement Accuracy of a Mono-Fiber Optical Probe in a Bubbly Flow
,”
Int. J. Multiphase Flow
,
36
(
7
), pp.
533
548
.
36.
Zhang
,
W.
, and
Zhu
,
D. Z.
,
2013
, “
Bubble Characteristics of Air–Water Bubbly Jets in Crossflow
,”
Int. J. Multiphase Flow
,
55
, pp.
156
171
.
37.
Chang
,
K.-A.
,
Lim
,
H.-J.
, and
Su
,
C. B.
,
2003
, “
Fiber Optic Reflectometer for Velocity and Fraction Ratio Measurements in Multiphase Flows
,”
Rev. Sci. Instrum.
,
74
(
7
), pp.
3559
3565
.
38.
Lima Neto
,
I.
,
Zhu
,
D.
, and
Rajaratnam
,
N.
,
2008
, “
Air Injection in Water With Different Nozzles
,”
J. Environ. Eng.
,
134
(
4
), pp.
283
294
.
39.
Kiambi
,
S. L.
,
Duquenne
,
A.-M.
,
Dupont
,
J. B.
,
Colin
,
C.
,
Risso
,
F.
, and
Delmas
,
H.
,
2003
, “
Measurements of Bubble Characteristics: Comparison Between Double Optical Probe and Imaging
,”
Can. J. Chem. Eng.
,
81
(
3–4
), pp.
764
770
.
40.
Chaumat
,
H.
,
Billet-Duquenne
,
A. M.
,
Augier
,
F.
,
Mathieu
,
C.
, and
Delmas
,
H.
,
2005
, “
Application of the Double Optic Probe Technique to Distorted Tumbling Bubbles in Aqueous or Organic Liquid
,”
Chem. Eng. Sci.
,
60
(
22
), pp.
6134
6145
.
41.
Cartellier
,
A.
, and
Barrau
,
E.
,
1998
, “
Monofiber Optical Probes for Gas Detection and Gas Velocity Measurements: Conical Probes
,”
Int. J. Multiphase Flow
,
24
(
8
), pp.
1265
1294
.
42.
Ishii
,
M.
, and
Hibiki
,
T.
,
2011
,
Thermo-Fluid Dynamics of Two-Phase Flow
,
Springer-Verlag
New York
.
43.
Rzehak
,
R.
, and
Krepper
,
E.
,
2013
, “
Closure Models for Turbulent Bubbly Flows: A CFD Study
,”
Nucl. Eng. Des.
,
265
, pp.
701
711
.
44.
Tomiyama
,
A.
,
Tamai
,
H.
,
Zun
,
I.
, and
Hosokawa
,
S.
,
2002
, “
Transverse Migration of Single Bubbles in Simple Shear Flows
,”
Chem. Eng. Sci.
,
57
(
11
), pp.
1849
1858
.
45.
Wellek
,
R. M.
,
Agrawal
,
A. K.
, and
Skelland
,
A. H. P.
,
1966
, “
Shape of Liquid Drops Moving in Liquid Media
,”
AIChE J.
,
12
(
5
), pp.
854
862
.
46.
Burns
,
A. D.
,
Frank
,
T.
,
Hamill
,
I.
, and
Shi
,
J.-M.
,
2004
, “
The Favre Averaged Drag Model for Turbulent Dispersion in Eulerian Multi-Phase Flows
,”
5th International Conference on Multiphase Flow, ICMF’04
, Yokohama, Japan, May 30–June 4, pp.
1
17
.
47.
Antal
,
S. P.
,
Lahey
,
R. T.
, Jr.
, and
Flaherty
,
J. E.
,
1991
, “
Analysis of Phase Distribution in Fully Developed Laminar Bubbly Two-Phase Flow
,”
Int. J. Multiphase Flow
,
17
(
5
), pp.
635
652
.
48.
Besagni
,
G.
,
Guédon
,
G.
, and
Inzoli
,
F.
,
2014
, “
Experimental and Numerical Study of Counter-Current Flow in a Vertical Pipe
,”
ASME
Paper No. ESDA2014-20053.
49.
Shaikh
,
A.
, and
Al-Dahhan
,
M. H.
,
2007
, “
A Review on Flow Regime Transition in Bubble Columns
,”
Int. J. Chem. React. Eng.
,
5
(
1
), pp.
1
68
.
50.
Krepper
,
E.
,
Lucas
,
D.
,
Frank
,
T.
,
Prasser
,
H.-M.
, and
Zwart
,
P. J.
,
2008
, “
The Inhomogeneous MUSIG Model for the Simulation of Polydispersed Flows
,”
Nucl. Eng. Des.
,
238
(
7
), pp.
1690
1702
.
51.
Lau
,
Y. M.
,
Sujatha
,
K. T.
,
Gaeini
,
M.
,
Deen
,
N. G.
, and
Kuipers
,
J. A. M.
,
2013
, “
Experimental Study of the Bubble Size Distribution in a Pseudo-2D Bubble Column
,”
Chem. Eng. Sci.
,
98
, pp.
203
211
.
52.
Hernandez-Aguilar
,
J. R.
,
Coleman
,
R. G.
,
Gomez
,
C. O.
, and
Finch
,
J. A.
,
2004
, “
A Comparison Between Capillary and Imaging Techniques for Sizing Bubbles in Flotation Systems
,”
Miner. Eng.
,
17
(
1
), pp.
53
61
.
53.
Parthasarathy
,
R.
, and
Ahmed
,
N.
,
1994
, “
Bubble Size Distribution in a Gas Sparged Vessel Agitated by a Rushton Turbine
,”
Ind. Eng. Chem. Res.
,
33
(
3
), pp.
703
711
.
54.
Kelessidis
,
V. C.
, and
Dukler
,
A. E.
,
1989
, “
Modeling Flow Pattern Transitions for Upward Gas–Liquid Flow in Vertical Concentric and Eccentric Annuli
,”
Int. J. Multiphase Flow
,
15
(
2
), pp.
173
191
.
55.
Otake
,
T.
,
Tone
,
S.
, and
Shinohara
,
K.
,
1981
, “
Gas Holdup in the Bubble Column With Cocurrent and Countercurrent Gas–Liquid Flow
,”
J. Chem. Eng. Jpn.
,
14
(
4
), pp.
338
340
.
56.
Akita
,
K.
, and
Yoshida
,
F.
,
1973
, “
Gas Holdup and Volumetric Mass Transfer Coefficient in Bubble Columns: Effects of Liquid Properties
,”
Ind. Eng. Chem. Process Des. Dev.
,
12
(
1
), pp.
76
80
.
57.
Krishna
,
R.
,
Wilkinson
,
P. M.
, and
Van Dierendonck
,
L. L.
,
1991
, “
A Model for Gas Holdup in Bubble Columns Incorporating the Influence of Gas Density on Flow Regime Transitions
,”
Chem. Eng. Sci.
,
46
(
10
), pp.
2491
2496
.
58.
Schumpe
,
A.
, and
Grund
,
G.
,
1986
, “
The Gas Disengagement Technique for Studying Gas Holdup Structure in Bubble Columns
,”
Can. J. Chem. Eng.
,
64
(
6
), pp.
891
896
.
59.
Wilkinson
,
P. M.
,
Spek
,
A. P.
, and
van Dierendonck
,
L. L.
,
1992
, “
Design Parameters Estimation for Scale-Up of High-Pressure Bubble Columns
,”
AIChE J.
,
38
(
4
), pp.
544
554
.
60.
Letzel
,
H. M.
,
Schouten
,
J. C.
,
Krishna
,
R.
, and
van den Bleek
,
C. M.
,
1999
, “
Gas Holdup and Mass Transfer in Bubble Column Reactors Operated at Elevated Pressure
,”
Chem. Eng. Sci.
,
54
(
13–14
), pp.
2237
2246
.
61.
Ruzicka
,
M. C.
,
Drahovs
,
J.
,
Fialova
,
M.
, and
Thomas
,
N. H.
,
2001
, “
Effect of Bubble Column Dimensions on Flow Regime Transition
,”
Chem. Eng. Sci.
,
56
(
21–22
), pp.
6117
6124
.
62.
Hur
,
Y. G.
,
Yang
,
J. H.
,
Jung
,
H.
, and
Park
,
S. B.
,
2013
, “
Origin of Regime Transition to Turbulent Flow in Bubble Column: Orifice- and Column-Induced Transitions
,”
Int. J. Multiphase Flow
,
50
, pp.
89
97
.
63.
Zahradnik
,
J.
,
Fialova
,
M.
,
Rruvzivc
,
M.
,
Drahovs
,
J.
,
Kavstanek
,
F.
, and
Thomas
,
N. H.
,
1997
, “
Duality of the Gas–Liquid Flow Regimes in Bubble Column Reactors
,”
Chem. Eng. Sci.
,
52
(
21–22
), pp.
3811
3826
.
64.
Besagni
,
G.
, and
Inzoli
,
F.
,
2015
, “
Influence of Electrolyte Concentration on Holdup, Flow Regime Transition and Local Flow Properties in a Large Scale Bubble Column
,”
33rd UIT Heat Transfer Conference
, L'Aquila, Italy, June 22–24.
65.
Dargar
,
P.
, and
Macchi
,
A.
,
2006
, “
Effect of Surface-Active Agents on the Phase Holdups of Three-Phase Fluidized Beds
,”
Chem. Eng. Process.
,
45
(
9
), pp.
764
772
.
66.
Rollbusch
,
P.
,
Becker
,
M.
,
Ludwig
,
M.
,
Bieberle
,
A.
,
Grünewald
,
M.
,
Hampel
,
U.
, and
Franke
,
R.
,
2015
, “
Experimental Investigation of the Influence of Column Scale, Gas Density and Liquid Properties on Gas Holdup in Bubble Columns
,”
Int. J. Multiphase Flow
,
75
, pp.
88
106
.
67.
Reith
,
T.
,
Renken
,
S.
, and
Israel
,
B. A.
,
1968
, “
Gas Hold-Up and Axial Mixing in the Fluid Phase of Bubble Columns
,”
Chem. Eng. Sci.
,
23
(
6
), pp.
619
629
.
68.
Thorat
,
B. N.
,
Shevade
,
A. V.
,
Bhilegaonkar
,
K. N.
,
Aglawe
,
R. H.
,
Parasu Veera
,
U.
,
Thakre
,
S. S.
,
Pandit
,
A. B.
,
Sawant
,
S. B.
, and
Joshi
,
J. B.
,
1998
, “
Effect of Sparger Design and Height to Diameter Ratio on Fractional Gas Hold-Up in Bubble Columns
,”
Chem. Eng. Res. Des.
,
76
(
7
), pp.
823
834
.
69.
Reilly
,
I. G.
,
Scott
,
D. S.
,
De Bruijn
,
T.
,
Jain
,
A.
, and
Piskorz
,
J.
,
1986
, “
A Correlation for Gas Holdup in Turbulent Coalescing Bubble Columns
,”
Can. J. Chem. Eng.
,
64
(
5
), pp.
705
717
.
70.
Joshi
,
J. B.
, and
Sharma
,
M. M.
,
1979
, “
A Circulation Cell Model for Bubble Column
,”
Trans. I. Chem. Eng.
,
57
, pp.
244
251
.
71.
Hughmark
,
G. A.
,
1967
, “
Holdup and Mass Transfer in Bubble Columns
,”
Ind. Eng. Chem. Process Des. Dev.
,
6
(
2
), pp.
218
220
.
72.
Kawase
,
Y.
, and
Moo-Young
,
M.
,
1987
, “
Theoretical Prediction of Gas Hold-Up in Bubble Columns With Newtonian and Non-Newtonian Fluids
,”
Ind. Eng. Chem. Res.
,
26
(
5
), pp.
933
937
.
73.
Hoang
,
N. H.
,
Euh
,
D. J.
,
Yun
,
B. J.
, and
Song
,
C. H.
,
2015
, “
A New Method of Relating a Chord Length Distribution to a Bubble Size Distribution for Vertical Bubbly Flows
,”
Int. J. Multiphase Flow
,
71
, pp.
23
31
.
You do not currently have access to this content.