Vortex-induced vibration is a fluid instability where vortices due to secondary flows exert a periodic unsteady force on the elastic structure. Under certain circumstances, the shedding frequency can lock into the structure natural frequency and lead to limit cycle oscillations. These vibrations may cause material fatigue and are a common source of structural failure. This work uses a frequency domain, harmonic balance (HB) computational fluid dynamics (CFD) code to predict the natural shedding frequency and lock-in region of an airfoil at very high angles of attack. The numerical results are then successfully compared to experimental data from wind tunnel testings.

References

References
1.
Williamson
,
C.
, and
Govardhan
,
R.
,
2008
, “
A Brief Review of Recent Results in Vortex-Induced Vibrations
,”
J. Wind Eng. Ind. Aerodyn.
,
96
(
6
), pp.
713
735
.
2.
Anagnostopoulos
,
P.
, and
Bearman
,
P. W.
,
1992
, “
Response Characteristics of a Vortex-Excited Cylinder at Low Reynolds Numbers
,”
J. Fluids Struct.
,
6
(
1
), pp.
39
50
.
3.
Karniadakis
,
G.
, and
Triantafyllou
,
G.
,
1989
, “
Frequency Selection and Asymptotic States in Laminar Wakes
,”
J. Fluid Mech.
,
199
, pp.
441
469
.
4.
Dowell
,
E. H.
,
Hall
,
K. C.
,
Thomas
,
J. P.
,
Kielb
,
R. E.
,
Spiker
,
M. A.
, and
Denegri
,
C. M.
, Jr.
,
2008
, “
A New Solution Method for Unsteady Flows Around Oscillating Bluff Bodies
,”
IUTAM
Symposium on Fluid-Structure Interaction in Ocean Engineering, Hamburg, Germany, Springer
, Vol.
8
, pp.
37
44
.
5.
Chen
,
J.
, and
Fang
,
Y.-C.
,
1998
, “
Lock-On of Vortex Shedding Due to Rotational Oscillations of a Flat Plate in a Uniform Stream
,”
J. Fluids Struct.
,
12
(
6
), pp.
779
798
.
6.
Yang
,
Y.
, and
Strganac
,
T. W.
,
2013
, “
Experiments of Vortex-Induced Torsional Oscillation of a Flat Plate in Cross Flow
,”
AIAA J.
,
51
(
6
), pp.
1522
1526
.
7.
Tang
,
D.
, and
Dowell
,
E.
,
2013
, “
Experimental Aerodynamic Response for an Oscillating Airfoil in Buffeting Flow
,”
AIAA J.
,
52
(
6
), pp.
1170
1179
.
8.
Bhat
,
S.
, and
Govardhan
,
R.
,
2013
, “
Stall Flutter of NACA0012 Airfoil at Low Reynolds Numbers
,”
J. Fluids Struct.
,
41
, pp.
166
174
.
9.
Zhu
,
B.
,
Lei
,
J.
, and
Cao
,
S.
,
2007
, “
Numerical Simulation of Vortex Shedding and Lock-In Characteristics for a Thin Cambered Blade
,”
ASME J. Fluids Eng.
,
129
(
10
), pp.
1297
1305
.
10.
Young
,
J.
, and
Lai
,
J. C. S.
,
2007
, “
Vortex Lock-In Phenomenon in the Wake of a Plunging Airfoil
,”
AIAA J.
,
45
(
2
), pp.
485
490
.
11.
Ashraf
,
M. A.
,
Young
,
J.
, and
Lai
,
J. C. S.
,
2012
, “
Oscillation Frequency and Amplitude Effects on Plunging Airfoil Propulsion and Flow Periodicity
,”
AIAA J.
,
50
(
11
), pp.
2308
2324
.
12.
Young
,
J.
,
Ashraf
,
M. A.
,
Lai
,
J. C. S.
, and
Platzer
,
M. F.
,
2013
, “
Numerical Simulation of Fully Passive Flapping Foil Power Generation
,”
AIAA J.
,
51
(
11
), pp.
2727
2739
.
13.
Sanders
,
A.
,
2005
, “
Non-Synchronous Vibration (NSV) Due to a Flow-Induced Aerodynamic Instability in a Composite Fan Stator
,”
ASME J. Turbomach.
,
127
(
2
), pp.
412
421
.
14.
Kielb
,
R.
,
Thomas
,
J.
,
Barter
,
P.
, and
Hall
,
K.
,
2003
, “
Blade Excitations by Aerodynamic Instabilities—A Compressor Blade Study
,”
ASME
Paper No. GT2003-38634.
15.
Drolet
,
M.
,
Vo
,
H. D.
, and
Mureithi
,
N. W.
,
2012
, “
Effect of Tip Clearance on the Prediction of Nonsynchronous Vibrations in Axial Compressors
,”
ASME J. Turbomach.
,
135
(
1
), p.
011023
.
16.
Spiker
,
M. A.
,
2008
, “
Development of an Efficient Design Method for Non-Synchronous Vibration
,” Ph.D. thesis,
Department of Mechanical Engineering and Materials Science
,
Duke University, Durham, NC
.
17.
Ota
,
T.
,
Okamoto
,
Y.
, and
Yoshikawa
,
H.
,
1994
, “
A Correction Formula for Wall Effects on Unsteady Forces of Two-Dimensional Bluff Bodies
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
414
418
.
18.
Chen
,
J.
, and
Fang
,
Y.-C.
,
1996
, “
Strouhal Number of Inclined Flat Plates
,”
J. Wind Eng. Ind. Aerodyn.
,
61
(
2–3
), pp.
99
112
.
19.
Hall
,
K. C.
,
Thomas
,
J. P.
, and
Clark
,
W. S.
,
2002
, “
Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique
,”
AIAA J.
,
40
(
5
), pp.
879
886
.
20.
Spiker
,
M.
,
Kielb
,
R.
,
Thomas
,
J.
, and
Hall
,
K. C.
,
2009
, “
Application of Enforced Motion to Study 2-D Cascade Lock-In Effect
,”
AIAA
Paper No. 2009-892.
21.
Zhou
,
T.
,
Dowell
,
E.
, and
Feng
,
S.
,
2014
, “
Numerical Study on Buffeting and Lock-In of an Airfoil at High Angle of Attack Including Correlation With Experiment
,”
J. Fluids Struct.
(submitted).
22.
Zhao
,
M.
,
Tong
,
F.
, and
Cheng
,
L.
,
2012
, “
Numerical Simulation of Two-Degree-of-Freedom Vortex-Induced Vibration of a Circular Cylinder Between Two Lateral Plane Walls in Steady Currents
,”
ASME J. Fluids Eng.
,
134
(
10
), p.
104501
.
23.
Clark
,
S.
,
Besem
,
F. M.
,
Kielb
,
R. E.
, and
Thomas
,
J. P.
,
2015
, “
Developing a Reduced-Order Model of Non-Synchronous Vibration in Turbomachinery Using Proper Orthogonal Decomposition Methods
,”
ASME J. Eng. Gas Turbines Power
,
137
(
5
), p.
052501
.
You do not currently have access to this content.