In this study, the difference between laminar fast transient flow of shear-thinning liquids and that of Newtonian liquids under similar conditions is numerically studied. Since the literature appears to lack fast transient flow investigation of non-Newtonian fluids, this work addresses features of those flows. In this way, the Newton–Kantorovich method is implemented to linearize nonlinear shear stress term available in the characteristic equations. The verification and validation of the solution are carried out in detail. The results show that the non-Newtonian behavior of fluids has significant influence on the velocity and shear stress profiles and also on the magnitude of pressure head and wall shear stress.

References

1.
Tazraei
,
P.
,
Riasi
,
A.
, and
Takabi
,
B.
,
2015
, “
The Influence of the Non-Newtonian Properties of Blood on Blood-Hammer Through the Posterior Cerebral Artery
,”
Math. Biosci.
,
264
, pp.
119
127
.
2.
Duan
,
F.
,
Kwek
,
D.
, and
Crivoi
,
A.
,
2011
, “
Viscosity Affected by Nanoparticle Aggregation in Al2O3-Water Nanofluids
,”
Nanoscale Res. Lett.
,
6
(
1
), p.
248
.
3.
AbuYousef
,
I. A.
,
Martinez
,
D. M.
,
Olson
,
J. A.
, and
Green
,
S. I.
,
2010
, “
Pumping Performance Increase Through the Addition of Turbulent Drag-Reducing Polymers to Pulp Fibre Suspensions
,”
ASME
Paper No. IMECE2010-37697.
4.
Ptasinski
,
P. K.
,
Nieuwstadt
,
F. T. M.
,
Van Den Brule
,
B. H. A. A.
, and
Hulsen
,
M. A.
,
2001
, “
Experiments in Turbulent Pipe Flow With Polymer Additives at Maximum Drag Reduction
,”
Flow, Turbul. Combust.
,
66
(
2
), pp.
159
182
.
5.
Johnston
,
B. M.
,
Johnston
,
P. R.
,
Corney
,
S.
, and
Kilpatrick
,
D.
,
2004
, “
Non-Newtonian Blood Flow in Human Right Coronary Arteries: Steady State Simulations
,”
J. Biomech.
,
37
(
5
), pp.
709
720
.
6.
Mandal
,
P. K.
,
2005
, “
An Unsteady Analysis of Non-Newtonian Blood Flow Through Tapered Arteries With a Stenosis
,”
Int. J. Nonlinear Mech.
,
40
(
1
), pp.
151
164
.
7.
Shibeshi
,
S. S.
, and
Collins
,
W. E.
,
2005
, “
The Rheology of Blood Flow in a Branched Arterial System
,”
Appl. Rheol.
,
15
(
6
), pp.
398
405
.
8.
Amornsamankul
,
S.
,
Wiwatanapataphee
,
B.
,
Wu
,
Y. H.
, and
Lenbury
,
Y.
,
2006
, “
Effect of Non-Newtonian Behavior of Blood on Pulsatile Flows in Stenotic Arteries
,”
Int. J. Biomed. Sci.
,
1
(
1
), pp.
42
46
.
9.
Damsa
,
T.
,
Appel
,
E.
, and
Cristidis
,
V.
,
1976
, “
Blood-Hammer Phenomenon in Cerebral Hemodynamics
,”
Math. Biosci.
,
29
(
3–4
), pp.
193
202
.
10.
Joukowski
,
N. E.
,
1898
, “
Memoirs of the Imperial Academy Society of St. Petersburg
,”
Proceedings of the American Water Works Association
, Vol.
24
, pp.
341
424
.
11.
Allievi
,
L.
,
1929
,
The Theory of Water Hammer
,
ASME
, New York.
12.
Streeter
,
V. L.
, and
Wylie
,
E. B.
,
1967
,
Hydraulic Transients
,
McGraw-Hill
,
New York
.
13.
Silva-Araya
,
W. F.
, and
Chaudhry
,
M. H.
,
1997
, “
Computation of Energy Dissipation in Transient Flow
,”
J. Hydraul. Eng.
,
123
(
2
), pp.
108
115
.
14.
Pezzinga
,
G.
,
1999
, “
Quasi-2D Model for Unsteady Flow in Pipe Networks
,”
J. Hydraul. Eng.
,
125
(
7
), pp.
676
685
.
15.
Vardy
,
A. E.
, and
Hwang
,
K. L.
,
1991
, “
A Characteristic Model of Transient Friction in Pipes
,”
J. Hydraul. Res.
,
29
(
5
), pp.
669
685
.
16.
Zhao
,
M.
, and
Ghidaoui
,
M. S.
,
2003
, “
Efficient Quasi-Two-Dimensional Model for Water Hammer Problems
,”
J. Hydraul. Eng.
,
129
(
12
), pp.
1007
1013
.
17.
Brunelli
,
M. C. P.
,
2005
, “
Two-Dimensional Pipe Model for Laminar Flow
,”
ASME J. Fluids Eng.
,
127
(
3
), pp.
431
437
.
18.
Ghidaoui
,
M. S.
, and
Kolyshkin
,
A. A.
,
2001
, “
Stability Analysis of Velocity Profiles in Water Hammer Flows
,”
J. Hydraul. Eng.
,
127
(
6
), pp.
499
512
.
19.
Brunone
,
B.
,
Ferrante
,
M.
, and
Cacciamani
,
M.
,
2004
, “
Decay of Pressure and Energy Dissipation in Laminar Transient Flow
,”
ASME J. Fluids Eng.
,
126
(
6
), pp.
928
934
.
20.
Wahba
,
E. M.
,
2008
, “
Modelling the Attenuation of Laminar Fluid Transients in Piping Systems
,”
Appl. Math. Modell.
,
32
(
12
), pp.
2863
2871
.
21.
Riasi
,
A.
,
Nourbakhsh
,
A.
, and
Raisee
,
M.
,
2009
, “
Unsteady Velocity Profiles in Laminar and Turbulent Water Hammer Flows
,”
ASME J. Fluids Eng.
,
131
(
12
), p.
121202
.
22.
Gupta
,
R. C.
,
2001
, “
On Developing Laminar Non-Newtonian Flow in Pipes and Channels
,”
Nonlinear Anal.: Real World Appl.
,
2
(
2
), pp.
171
193
.
23.
McGinty
,
S.
,
McKee
,
S.
, and
McDermott
,
R.
,
2009
, “
Analytic Solutions of Newtonian and Non-Newtonian Pipe Flows Subject to a General Time-Dependent Pressure Gradient
,”
J. Non-Newtonian Fluid Mech.
,
162
(
1–3
), pp.
54
77
.
24.
Carreau
,
P. J.
,
1972
, “
Rheological Equations From Molecular Network Theories
,”
Trans. Soc. Rheol.
,
16
(
1
), pp.
99
127
.
25.
Boyd
,
J. P.
,
2000
,
Chebyshev and Fourier Spectral Methods
,
Dover Publications
,
New York
.
26.
Bird
,
R. B.
,
Armstrong
,
R. C.
, and
Hassager
,
O.
,
1977
,
Dynamics of Polymeric Liquids
,
Wiley
,
New York
.
27.
The American Society of Mechanical Engineers
,
2009
,
Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer
,
American National Standard, ASME
, New York.
28.
Holmboe
,
E. L.
, and
Rouleau
,
W. T.
,
1967
, “
The Effect of Viscous Shear on Transients in Liquid Lines
,”
ASME J. Basic Eng.
,
89
(
1
), pp.
174
180
.
29.
Lukacova-Medvidova
,
M.
, and
Zauskova
,
A.
,
2008
, “
Numerical Modeling of Shear Thinning Non-Newtonian Flows in Compliant Vessels
,”
Int. J. Numer. Methods Fluids
,
56
(
8
), pp.
1409
1415
.
30.
Richardson
,
E. G.
, and
Tyler
,
E.
,
1929
, “
The Transfer Velocity Gradient Near the Mouths of Pipes in Which an Alternating or Continuous Flow of Air Is Established
,”
Proc. Phys. Soc. London
,
42
(
1
), pp.
1
15
.
31.
White
,
F. M.
,
1991
,
Viscous Fluid Flow
,
McGraw-Hill
,
New York
.
32.
Kucienska
,
B.
,
Seynhaeve
,
J. M.
, and
Giot
,
M.
,
2008
, “
Friction Relaxation Model for Fast Transient Flows Application to Water Hammer in Two-Phase Flow—The WAHA Code
,”
Int. J. Multiphase Flow
,
34
(
2
), pp.
188
205
.
You do not currently have access to this content.