A computational tool is introduced and applied to the emergence of supersonic liquid jets in quiescent compressible gas. A diffuse interface wave propagation method along with an interface sharpening technique is employed to solve the governing equations of compressible multiphase flows. Adaptive mesh refinement (AMR) strategy is utilized to improve the ability of the solver in better resolving the flow features. The accuracy of our method is benchmarked with four experimental and numerical test problems. Then, the evolution of supersonic liquid jets in compressible gaseous media is simulated; demonstrating a good agreement with experimental observations. Moreover, the impact of physical parameters, such as increment in ambient pressure and inlet velocity on the flow characteristics, is examined. The results indicate that the penetration length of the liquid jet decreases with an increase in the ambient pressure. The values of this parameter compare reasonably well with the experiment-based correlations. Further, with lower ambient pressure the Mach cone generated ahead of the liquid jet has a narrower half angle, situated closer to the jet tip. A similar behavior is demonstrated by the induced shock-front when the inlet Mach number of the liquid jet is increased. The simulations indicate the applicability of our numerical methodology to supersonic liquid jet flows for the analysis of shock waves dynamics and shock–interface interaction.

References

References
1.
Rochester
,
M.
, and
Brunton
,
J.
,
1972
, “
High Speed Impact of Liquid Jets on Solids
,”
1st International Symposium on Jet Cutting Technology
, p.
A1
.
2.
Summers
,
D. A.
,
2003
,
Waterjetting Technology
,
CRC Press
,
London
.
3.
Shi
,
H.
,
Field
,
J.
, and
Pickles
,
C.
,
1994
, “
High Speed Liquid Impact Onto Wetted Solid Surfaces
,”
ASME J. Fluids Eng.
,
116
(
2
), pp.
345
348
.
4.
Aich
,
U.
,
Banerjee
,
S.
,
Bandyopadhyay
,
A.
, and
Das
,
P. K.
,
2014
, “
Abrasive Water Jet Cutting of Borosilicate Glass
,”
Procedia Mater. Sci.
,
6
, pp.
775
785
.
5.
Azmir
,
M.
, and
Ahsan
,
A.
,
2009
, “
A Study of Abrasive Water Jet Machining Process on Glass/Epoxy Composite Laminate
,”
J. Mater. Process. Technol.
,
209
(
20
), pp.
6168
6173
.
6.
Jensen
,
B.
,
2011
,
Tank Cleaning Technology: Innovative Application to Improve Clean-in-Place (CIP)
,
European Hygienic Engineering and Design Group (EHEDG)
,
Frankfurt, Germany
.
7.
Wang
,
T.
,
Faria
,
D.
,
Stevens
,
L.
,
Tan
,
J.
,
Davidson
,
J.
, and
Wilson
,
D.
,
2013
, “
Flow Patterns and Draining Films Created by Horizontal and Inclined Coherent Water Jets Impinging on Vertical Walls
,”
Chem. Eng. Sci.
,
102
, pp.
585
601
.
8.
Segal
,
C.
,
2009
,
The Scramjet Engine: Processes and Characteristics
,
Cambridge University Press
,
New York
.
9.
Dingle
,
P. J.
, and
Lai
,
M.-C. D.
,
2005
,
Diesel Common Rail and Advanced Fuel Injection Systems
,
Society of Automotive Engineers
,
Warrendale, PA
.
10.
Milton
,
B.
, and
Pianthong
,
K.
,
2005
, “
Pulsed, Supersonic Fuel Jets—A Review of Their Characteristics and Potential for Fuel Injection
,”
Int. J. Heat Fluid Flow
,
26
(
4
), pp.
656
671
.
11.
Reddy
,
M. S.
,
Kumar
,
M. R.
,
Kumar
,
K. S.
,
Goli
,
A.
, and
Kumar
,
P. S.
,
2011
, “
Review on Needle Free Drug Delivery Systems
,”
Int. J. Rev. Life Sci.
,
1
(
2
), pp.
76
82
.
12.
Peters
,
I. R.
,
Tagawa
,
Y.
,
Oudalov
,
N.
,
Sun
,
C.
,
Prosperetti
,
A.
,
Lohse
,
D.
, and
van der Meer
,
D.
,
2013
, “
Highly Focused Supersonic Microjets: Numerical Simulations
,”
J. Fluid Mech.
,
719
, pp.
587
605
.
13.
Tagawa
,
Y.
,
Oudalov
,
N.
,
Visser
,
C. W.
,
Peters
,
I. R.
,
van der Meer
,
D.
,
Sun
,
C.
,
Prosperetti
,
A.
, and
Lohse
,
D.
,
2012
, “
Highly Focused Supersonic Microjets
,”
Phys. Rev. X
,
2
(
3
), p.
031002
.
14.
Shi
,
H.
, and
Kleinstreuer
,
C.
,
2007
, “
Simulation and Analysis of High-Speed Droplet Spray Dynamics
,”
ASME J. Fluids Eng.
,
129
(
5
), pp.
621
633
.
15.
Jiang
,
X.
,
Siamas
,
G.
,
Jagus
,
K.
, and
Karayiannis
,
T.
,
2010
, “
Physical Modelling and Advanced Simulations of Gas–Liquid Two-Phase Jet Flows in Atomization and Sprays
,”
Prog. Energy Combust. Sci.
,
36
(
2
), pp.
131
167
.
16.
Singh
,
S.
, and
Musculus
,
M. P.
,
2010
, “
Numerical Modeling and Analysis of Entrainment in Turbulent Jets After the End of Injection
,”
ASME J. Fluids Eng.
,
132
(
8
), p.
081203
.
17.
Irannejad
,
A.
, and
Jaberi
,
F.
,
2014
, “
Large Eddy Simulation of Turbulent Spray Breakup and Evaporation
,”
Int. J. Multiphase Flow
,
61
, pp.
108
128
.
18.
Irannejad
,
A.
,
Banaeizadeh
,
A.
, and
Jaberi
,
F.
,
2014
, “
Large Eddy Simulation of Turbulent Spray Combustion
,”
Combust. Flame
,
162
(
2
), pp.
431
450
.
19.
Yuan
,
W.
, and
Schnerr
,
G. H.
,
2003
, “
Numerical Simulation of Two-Phase Flow in Injection Nozzles: Interaction of Cavitation and External Jet Formation
,”
ASME J. Fluids Eng.
,
125
(
6
), pp.
963
969
.
20.
Pan
,
Y.
, and
Suga
,
K.
,
2003
, “
Capturing the Pinch-Off of Liquid Jets by the Level Set Method
,”
ASME J. Fluids Eng.
,
125
(
5
), pp.
922
927
.
21.
Pan
,
Y.
, and
Suga
,
K.
,
2006
, “
A Numerical Study on the Breakup Process of Laminar Liquid Jets Into a Gas
,”
Phys. Fluids
,
18
(
5
), p.
052101
.
22.
Ménard
,
T.
,
Tanguy
,
S.
, and
Berlemont
,
A.
,
2007
, “
Coupling Level Set/VOF/Ghost Fluid Methods: Validation and Application to 3D Simulation of the Primary Break-Up of a Liquid Jet
,”
Int. J. Multiphase Flow
,
33
(
5
), pp.
510
524
.
23.
Klein
,
M.
,
2005
, “
Direct Numerical Simulation of a Spatially Developing Water Sheet at Moderate Reynolds Number
,”
Int. J. Heat Fluid Flow
,
26
(
5
), pp.
722
731
.
24.
Kim
,
D.
,
Desjardins
,
O.
,
Herrmann
,
M.
, and
Moin
,
P.
,
2006
, “
Toward Two-Phase Simulation of the Primary Breakup of a Round Liquid Jet by a Coaxial Flow of Gas
,” Center for Turbulence Research Annual Research Briefs, p.
185
.
25.
Fuster
,
D.
,
Bagué
,
A.
,
Boeck
,
T.
,
Le Moyne
,
L.
,
Leboissetier
,
A.
,
Popinet
,
S.
,
Ray
,
P.
,
Scardovelli
,
R.
, and
Zaleski
,
S.
,
2009
, “
Simulation of Primary Atomization With an Octree Adaptive Mesh Refinement and VOF Method
,”
Int. J. Multiphase Flow
,
35
(
6
), pp.
550
565
.
26.
Ali
,
M.
,
Umemura
,
A.
, and
Islam
,
M. Q.
,
2012
, “
A Numerical Investigation on Dynamics and Breakup of Liquid Sheet
,”
ASME J. Fluids Eng.
,
134
(
10
), p.
101303
.
27.
Desjardins
,
O.
,
Moureau
,
V.
, and
Pitsch
,
H.
,
2008
, “
An Accurate Conservative Level Set/Ghost Fluid Method for Simulating Turbulent Atomization
,”
J. Comput. Phys.
,
227
(
18
), pp.
8395
8416
.
28.
Herrmann
,
M.
,
2011
, “
On Simulating Primary Atomization Using the Refined Level Set Grid Method
,”
Atomization Sprays
,
21
(
4
), p.
283
.
29.
Shinjo
,
J.
, and
Umemura
,
A.
,
2011
, “
Surface Instability and Primary Atomization Characteristics of Straight Liquid Jet Sprays
,”
Int. J. Multiphase Flow
,
37
(
10
), pp.
1294
1304
.
30.
Li
,
X.
, and
Soteriou
,
M.
,
2013
, “
High-Fidelity Simulation of Fuel Atomization in a Realistic Swirling Flow Injector
,”
Atomization Sprays
,
23
(
11
), pp.
1049
1078
.
31.
Desjardins
,
O.
,
McCaslin
,
J.
,
Owkes
,
M.
, and
Brady
,
P.
,
2013
, “
Direct Numerical and Large-Eddy Simulation of Primary Atomization in Complex Geometries
,”
Atomization Sprays
,
23
(
11
), pp.
1001
1048
.
32.
Arienti
,
M.
, and
Sussman
,
M.
,
2014
, “
An Embedded Level Set Method for Sharp-Interface Multiphase Simulations of Diesel Injectors
,”
Int. J. Multiphase Flow
,
59
, pp.
1
14
.
33.
Farvardin
,
E.
, and
Dolatabadi
,
A.
,
2013
, “
Numerical Simulation of the Breakup of Elliptical Liquid Jet in Still Air
,”
ASME J. Fluids Eng.
,
135
(
7
), p.
071302
.
34.
Shinjo
,
J.
, and
Umemura
,
A.
,
2010
, “
Simulation of Liquid Jet Primary Breakup: Dynamics of Ligament and Droplet Formation
,”
Int. J. Multiphase Flow
,
36
(
7
), pp.
513
532
.
35.
Burluka
,
A.
, and
Borghi
,
R.
,
2001
, “
Development of a Eulerian Model for the ‘Atomization’ of a Liquid Jet
,”
Atomization Sprays
,
11
(
6
), pp.
619
642
.
36.
Jay
,
S.
,
Lacas
,
F.
, and
Candel
,
S.
,
2006
, “
Combined Surface Density Concepts for Dense Spray Combustion
,”
Combust. Flame
,
144
(
3
), pp.
558
577
.
37.
Chesnel
,
J.
,
Menard
,
T.
,
Reveillon
,
J.
, and
Demoulin
,
F.-X.
,
2011
, “
Subgrid Analysis of Liquid Jet Atomization
,”
Atomization Sprays
,
21
(
1
), pp.
41
67
.
38.
Xiao
,
F.
,
Dianat
,
M.
, and
McGuirk
,
J. J.
,
2014
, “
Large Eddy Simulation of Single Droplet and Liquid Jet Primary Breakup Using a Coupled Level Set/Volume of Fluid Method
,”
Atomization Sprays
,
24
(
4
), pp.
281
302
.
39.
Xiao
,
F.
,
Dianat
,
M.
, and
McGuirk
,
J. J.
,
2014
, “
LES of Turbulent Liquid Jet Primary Breakup in Turbulent Coaxial Air Flow
,”
Int. J. Multiphase Flow
,
60
, pp.
103
118
.
40.
Örley
,
F.
,
Trummler
,
T.
,
Hickel
,
S.
,
Mihatsch
,
M.
,
Schmidt
,
S.
, and
Adams
,
N.
,
2015
, “
Large-Eddy Simulation of Cavitating Nozzle Flow and Primary Jet Break-Up
,”
Phys. Fluids
,
27
(
8
), p.
086101
.
41.
Bo
,
W.
,
Liu
,
X.
,
Glimm
,
J.
, and
Li
,
X.
,
2011
, “
A Robust Front Tracking Method: Verification and Application to Simulation of the Primary Breakup of a Liquid Jet
,”
SIAM J. Sci. Comput.
,
33
(
4
), pp.
1505
1524
.
42.
Siamas
,
G. A.
,
Jiang
,
X.
, and
Wrobel
,
L. C.
,
2009
, “
Direct Numerical Simulation of the Near-Field Dynamics of Annular Gas-Liquid Two-Phase Jets
,”
Phys. Fluids
,
21
(
4
), p.
042103
.
43.
Pougatch
,
K.
, and
Salcudean
,
M.
,
2011
, “
Computational Investigation of Liquid Spray Dispersion Modification by Conical Nozzle Attachments
,”
ASME J. Fluids Eng.
,
133
(
3
), p.
031301
.
44.
Wang
,
Y.
,
Qiu
,
L.
,
Reitz
,
R. D.
, and
Diwakar
,
R.
,
2014
, “
Simulating Cavitating Liquid Jets Using a Compressible and Equilibrium Two-Phase Flow Solver
,”
Int. J. Multiphase Flow
,
63
, pp.
52
67
.
45.
Im
,
K.-S.
,
Cheong
,
S.-K.
,
Liu
,
X.
,
Wang
,
J.
,
Lai
,
M.-C.
,
Tate
,
M. W.
,
Ercan
,
A.
,
Renzi
,
M. J.
,
Schuette
,
D. R.
, and
Gruner
,
S. M.
,
2009
, “
Interaction Between Supersonic Disintegrating Liquid Jets and Their Shock Waves
,”
Phys. Rev. Lett.
,
102
(
7
), p.
074501
.
46.
Zhang
,
Z.-C.
,
Yu
,
S.
, and
Chang
,
S.-C.
,
2002
, “
A Space-Time Conservation Element and Solution Element Method for Solving the Two- and Three-Dimensional Unsteady Euler Equations Using Quadrilateral and Hexahedral Meshes
,”
J. Comput. Phys.
,
175
(
1
), pp.
168
199
.
47.
Zakrzewski
,
S.
,
Milton
,
B.
,
Pianthong
,
K.
, and
Behnia
,
M.
,
2004
, “
Supersonic Liquid Fuel Jets Injected Into Quiescent Air
,”
Int. J. Heat Fluid Flow
,
25
(
5
), pp.
833
840
.
48.
Shukla
,
R. K.
,
Pantano
,
C.
, and
Freund
,
J. B.
,
2010
, “
An Interface Capturing Method for the Simulation of Multi-Phase Compressible Flows
,”
J. Comput. Phys.
,
229
(
19
), pp.
7411
7439
.
49.
So
,
K.
,
Hu
,
X.
, and
Adams
,
N.
,
2012
, “
Anti-Diffusion Interface Sharpening Technique for Two-Phase Compressible Flow Simulations
,”
J. Comput. Phys.
,
231
(
11
), pp.
4304
4323
.
50.
Tiwari
,
A.
,
Freund
,
J. B.
, and
Pantano
,
C.
,
2013
, “
A Diffuse Interface Model With Immiscibility Preservation
,”
J. Comput. Phys.
,
252
, pp.
290
309
.
51.
Nonomura
,
T.
,
Kitamura
,
K.
, and
Fujii
,
K.
,
2014
, “
A Simple Interface Sharpening Technique With a Hyperbolic Tangent Function Applied to Compressible Two-Fluid Modeling
,”
J. Comput. Phys.
,
258
, pp.
95
117
.
52.
Shukla
,
R. K.
,
2014
, “
Nonlinear Preconditioning for Efficient and Accurate Interface Capturing in Simulation of Multicomponent Compressible Flows
,”
J. Comput. Phys.
,
276
, pp.
508
540
.
53.
Shyue
,
K.-M.
, and
Xiao
,
F.
,
2014
, “
An Eulerian Interface Sharpening Algorithm for Compressible Two-Phase Flow: The Algebraic THINC Approach
,”
J. Comput. Phys.
,
268
, pp.
326
354
.
54.
Nourgaliev
,
R. R.
,
Dinh
,
T.-N.
, and
Theofanous
,
T. G.
,
2006
, “
Adaptive Characteristics-Based Matching for Compressible Multifluid Dynamics
,”
J. Comput. Phys.
,
213
(
2
), pp.
500
529
.
55.
Vanella
,
M.
,
Posa
,
A.
, and
Balaras
,
E.
,
2014
, “
Adaptive Mesh Refinement for Immersed Boundary Methods
,”
ASME J. Fluids Eng.
,
136
(
4
), p.
040909
.
56.
Deiterding
,
R.
,
2005
, “
Construction and Application of an Amr Algorithm for Distributed Memory Computers
,”
Adaptive Mesh Refinement-Theory and Applications
,
Springer
,
Berlin
, pp.
361
372
.
57.
Murrone
,
A.
, and
Guillard
,
H.
,
2005
, “
A Five Equation Reduced Model for Compressible Two Phase Flow Problems
,”
J. Comput. Phys.
,
202
(
2
), pp.
664
698
.
58.
Perigaud
,
G.
, and
Saurel
,
R.
,
2005
, “
A Compressible Flow Model With Capillary Effects
,”
J. Comput. Phys.
,
209
(
1
), pp.
139
178
.
59.
Kapila
,
A.
,
Menikoff
,
R.
,
Bdzil
,
J.
,
Son
,
S.
, and
Stewart
,
D.
,
2001
, “
Two-Phase Modeling of Deflagration-to-Detonation Transition in Granular Materials: Reduced Equations
,”
Phys. Fluids
,
13
(
10
), pp.
3002
3024
.
60.
LeVeque
,
R. J.
,
2002
,
Finite Volume Methods for Hyperbolic Problems
,
Cambridge University Press
,
Cambridge
.
61.
Ketcheson
,
D. I.
,
Parsani
,
M.
, and
LeVeque
,
R. J.
,
2013
, “
High-Order Wave Propagation Algorithms for Hyperbolic Systems
,”
SIAM J. Sci. Comput.
,
35
(
1
), pp.
A351
A377
.
62.
van Leer
,
B.
,
1979
, “
Towards the Ultimate Conservative Difference Scheme. V. A Second-Order Sequel to Godunov's Method
,”
J. Comput. Phys.
,
32
(
1
), pp.
101
136
.
63.
Allaire
,
G.
,
Clerc
,
S.
, and
Kokh
,
S.
,
2002
, “
A Five-Equation Model for the Simulation of Interfaces Between Compressible Fluids
,”
J. Comput. Phys.
,
181
(
2
), pp.
577
616
.
64.
Xie
,
W.
,
Liu
,
T.
, and
Khoo
,
B.
,
2006
, “
Application of a One-Fluid Model for Large Scale Homogeneous Unsteady Cavitation: The Modified Schmidt Model
,”
Comput. Fluids
,
35
(
10
), pp.
1177
1192
.
65.
Berger
,
M. J.
, and
Oliger
,
J.
,
1984
, “
Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations
,”
J. Comput. Phys.
,
53
(
3
), pp.
484
512
.
66.
Berger
,
M. J.
, and
Colella
,
P.
,
1989
, “
Local Adaptive Mesh Refinement for Shock Hydrodynamics
,”
J. Comput. Phys.
,
82
(
1
), pp.
64
84
.
67.
Saurel
,
R.
,
Petitpas
,
F.
, and
Berry
,
R. A.
,
2009
, “
Simple and Efficient Relaxation Methods for Interfaces Separating Compressible Fluids, Cavitating Flows and Shocks in Multiphase Mixtures
,”
J. Comput. Phys.
,
228
(
5
), pp.
1678
1712
.
68.
Haas
,
J.-F.
, and
Sturtevant
,
B.
,
1987
, “
Interaction of Weak Shock Waves With Cylindrical and Spherical Gas Inhomogeneities
,”
J. Fluid Mech.
,
181
, pp.
41
76
.
69.
Quirk
,
J. J.
, and
Karni
,
S.
,
1996
, “
On the Dynamics of a Shock–Bubble Interaction
,”
J. Fluid Mech.
,
318
, pp.
129
163
.
70.
Bourne
,
N.
, and
Field
,
J.
,
1992
, “
Shock-Induced Collapse of Single Cavities in Liquids
,”
J. Fluid Mech.
,
244
, pp.
225
240
.
71.
Hawker
,
N.
, and
Ventikos
,
Y.
,
2012
, “
Interaction of a Strong Shockwave With a Gas Bubble in a Liquid Medium: A Numerical Study
,”
J. Fluid Mech.
,
701
, pp.
59
97
.
72.
Terashima
,
H.
, and
Tryggvason
,
G.
,
2009
, “
A Front-Tracking/Ghost-Fluid Method for Fluid Interfaces in Compressible Flows
,”
J. Comput. Phys.
,
228
(
11
), pp.
4012
4037
.
73.
Majidi
,
S.
, and
Afshari
,
A.
,
2015
, “
Towards Numerical Simulations of Supersonic Liquid Jets Using Ghost Fluid Method
,”
Int. J. Heat Fluid Flow
,
53
, pp.
98
112
.
74.
Sallam
,
K.
,
Dai
,
Z.
, and
Faeth
,
G.
,
2002
, “
Liquid Breakup at the Surface of Turbulent Round Liquid Jets in Still Gases
,”
Int. J. Multiphase Flow
,
28
(
3
), pp.
427
449
.
75.
Sallam
,
K.
, and
Faeth
,
G.
,
2003
, “
Surface Properties During Primary Breakup of Turbulent Liquid Jets in Still Air
,”
AIAA J.
,
41
(
8
), pp.
1514
1524
.
76.
Pianthong
,
K.
,
2002
, “
Supersonic Liquid Diesel Fuel Jets: Generation, Shock Wave Characteristics, Auto-Ignition Feasibilities
,” Ph.D. dissertation, University of New South Wales, Sydney, Australia.
77.
Shi
,
H.-H.
, and
Takayama
,
K.
,
1999
, “
Generation of Hypersonic Liquid Fuel Jets Accompanying Self-Combustion
,”
Shock Waves
,
9
(
5
), pp.
327
332
.
78.
MacPhee
,
A. G.
,
Tate
,
M. W.
,
Powell
,
C. F.
,
Yue
,
Y.
,
Renzi
,
M. J.
,
Ercan
,
A.
,
Narayanan
,
S.
,
Fontes
,
E.
,
Walther
,
J.
, and
Schaller
,
J.
,
2002
, “
X-Ray Imaging of Shock Waves Generated by High-Pressure Fuel Sprays
,”
Science
,
295
(
5558
), pp.
1261
1263
.
79.
Koch
,
D.
,
2003
, “
SF6 Properties, and Use in MV and HV Switchgear
,” Schneider Electric, Cashier Technique No. 188.
80.
Herrmann
,
M.
,
2010
, “
Detailed Numerical Simulations of the Primary Atomization of a Turbulent Liquid Jet in Crossflow
,”
ASME J. Eng. Gas Turbines Power
,
132
(
6
), p.
061506
.
81.
Sittiwong
,
W.
,
Pianthong
,
K.
,
Seehanam
,
W.
,
Milton
,
B.
, and
Takayama
,
K.
,
2012
, “
Effects of Chamber Temperature and Pressure on the Characteristics of High Speed Diesel Jets
,”
Shock Waves
,
22
(
3
), pp.
215
223
.
82.
Nishida
,
K.
,
Ochiai
,
H.
,
Arai
,
M.
, and
Hiroyasu
,
H.
,
1997
, “
Characterization of Diesel Fuel Spray by Ultrahigh-Pressure Injection
,”
Trans. Jpn. Soc. Mech. Eng.
, Part B,
63
(
605
), pp.
344
349
.
83.
Papamoschou
,
D.
,
1997
, “
Mach Wave Elimination in Supersonic Jets
,”
AIAA J.
,
35
(
10
), pp.
1604
1611
.
84.
Anderson
,
J. D.
,
2002
,
Modern Compressible Flow With Historical Perspective
,
McGraw-Hill Science/Engineering/Math
,
New York
.
85.
Kook
,
S.
, and
Pickett
,
L. M.
,
2008
, “
Effect of Ambient Temperature and Density on Diesel-Spray-Generated Shock Waves
,”
ILASS Americas, 21st Annual Conference on Liquid Atomization and Spray Systems
,
Orlando, FL
.
86.
Dent
,
J.
,
1971
, “
A Basis for the Comparison of Various Experimental Methods for Studying Spray Penetration
,”
SAE
Technical Paper No. 710571.
87.
Hiroyasu
,
H.
,
1997
, “
Fundamental Spray Combustion Mechanism and Structures of Fuel Sprays in Diesel Engines
,”
Symposium, Mechanics and Combustion of Droplets and Sprays
,
Begell House, New York
, pp.
291
306
.
88.
Roisman
,
I.
,
Araneo
,
L.
, and
Tropea
,
C.
,
2007
, “
Effect of Ambient Pressure on Penetration of a Diesel Spray
,”
Int. J. Multiphase Flow
,
33
(
8
), pp.
904
920
.
You do not currently have access to this content.