The flow structure downstream of a triangular rib over a thin plate placed in a wind tunnel was experimentally investigated using a boundary layer hotwire anemometer. Flow and boundary layer characteristics, such as thickness, shape, and turbulence parameters, were studied at different freestream velocities and streamwise locations corresponding to ReX of 1.7 × 104–2.8 × 105 for plates without and with a leading edge rib. It was found that the boundary layer of the flow over a ribbed wall was 3–3.5 times thicker and had higher turbulence intensity and smaller turbulence length scales compared to its smooth wall counterpart.

References

References
1.
Saha
,
A. K.
, and
Acharya
,
S.
,
2005
, “
Unsteady RANS Simulation of Turbulent Flow and Heat Transfer in Ribbed Coolant Passages of Different Aspect Ratios
,”
Int. J. Heat Mass Transfer
,
48
(
23–24
), pp.
4704
4725
.
2.
Panigrahi
,
P. K.
, and
Acharya
,
S.
,
2004
, “
Multi-Modal Forcing of the Turbulent Separated Shear Flow Past a Rib
,”
ASME J. Fluids Eng.
,
126
(
1
), pp.
22
31
.
3.
Bhagoria
,
J. L.
,
Saini
,
J. S.
, and
Solanki
,
S. C.
,
2002
, “
Heat Transfer Coefficient and Friction Factor Correlations for Rectangular Solar Air Heater Duct Having Transverse Wedge Shaped Rib Roughness on the Absorber Plate
,”
Renewable Energy
,
25
(
3
), pp.
341
369
.
4.
Mittal
,
M. K.
,
Varun
,
Saini
,
R. P.
, and
Singal
,
S. K.
,
2007
, “
Effective Efficiency of Solar Air Heaters Having Different Types of Roughness Elements on the Absorber Plate
,”
Energy
,
32
(
5
), pp.
739
745
.
5.
Chamoli
,
S.
,
Thakur
,
N. S.
, and
Sain
,
J. S.
,
2012
, “
A Review of Turbulence Promoters Used in Solar Thermal Systems
,”
Renewable Sustainable Energy Rev.
,
16
(
5
), pp.
3154
3175
.
6.
Thianpong
,
C.
,
Chompookham
,
T.
,
Skullong
,
S.
, and
Promvonge
,
P.
,
2009
, “
Thermal Characterization of Turbulent Flow in a Channel With Isosceles Triangular Ribs
,”
Int. Commun. Heat Mass Transfer
,
36
(
7
), pp.
712
717
.
7.
Chun
,
S. J.
,
Liu
,
Y. Z.
, and
Sung
,
H. J.
,
2004
, “
Wall Pressure Fluctuations of a Turbulent Separated and Reattaching Flow Affected by an Unsteady Wake
,”
Exp. Fluids
,
37
(
4
), pp.
531
546
.
8.
Liu
,
Y. Z.
,
Kang
,
W.
, and
Sung
,
H. J.
,
2005
, “
Assessment of the Organization of a Turbulent Separated and Reattaching Flow by Measuring Wall Pressure Fluctuations
,”
Exp. Fluids
,
38
(
4
), pp.
485
493
.
9.
Panigrahi
,
P. K.
, and
Acharya
,
S.
,
2005
, “
Excited Turbulent Flow Behind a Square Rib
,”
J. Fluids Struct.
,
20
(
2
), pp.
235
253
.
10.
Bergeles
,
G.
, and
Athanassiadis
,
N.
,
1983
, “
The Flow Past a Surface-Mounted Obstacle
,”
ASME J. Fluids Eng.
,
105
(
4
), pp.
461
463
.
11.
Fragos
,
V. P.
,
Psychoudaki
,
S. P.
, and
Malamataris
,
N. A.
,
2012
, “
Two-Dimensional Numerical Simulation of Vortex Shedding and Flapping Motion of Turbulent Flow Around a Rib
,”
Comput. Fluids
,
69
, pp.
108
121
.
12.
Acharya
,
S.
, and
Panigrahi
,
P. K.
,
2003
, “
Analysis of Large Scale Structures in Separated Shear Layers
,”
Exp. Therm. Fluid Sci.
,
27
(
7
), pp.
817
828
.
13.
Panigrahi
,
P. K.
, and
Acharya
,
S.
,
1996
, “
Spectral Characteristics of Separated Flow Behind a Surface-Mounted Square Rib
,”
AIAA
Paper No. 96–1931.
14.
Liu
,
Y. Z.
,
Ke
,
F.
, and
Sung
,
H. J.
,
2008
, “
Unsteady Separated and Reattaching Turbulent Flow Over a Two-Dimensional Square Rib
,”
J. Fluids Struct.
,
24
(
3
), pp.
366
381
.
15.
Kamali
,
R.
, and
Binesh
,
A. R.
,
2008
, “
The Importance of Rib Shape Effects on the Local Heat Transfer and Flow Friction Characteristics of Square Ducts With Ribbed Internal Surfaces
,”
Int. Commun. Heat Mass Transfer
,
35
(
8
), pp.
1032
1040
.
16.
Patil
,
A. K.
,
Saini
,
J. S.
, and
Kumar
,
K.
,
2012
, “
A Comprehensive Review on Roughness Geometries and Investigation Techniques Used in Artificially Roughened Solar Air Heaters
,”
Int. J. Renewable Energy Res.
,
2
(
1
), pp.
1
15
.
17.
Promvonge
,
P.
, and
Thianpong
,
C.
,
2008
, “
Thermal Performance Assessment of Turbulent Channel Flows Over Different Shaped Ribs
,”
Int. Commun. Heat Mass Transfer
,
35
(
10
), pp.
1327
1334
.
18.
Liou
,
T. M.
, and
Hwang
,
J. J.
,
1993
, “
Effect of Ridge Shapes on Turbulent Heat Transfer and Friction in a Rectangular Channel
,”
Int. J. Heat Mass Transfer
,
36
(
4
), pp.
931
940
.
19.
Ahn
,
S. W.
,
2001
, “
The Effects of Roughness Types on Friction Factors and Heat Transfer in Roughened Rectangular Duct
,”
Int. Commun. Heat Mass Transfer
,
28
(
7
), pp.
933
942
.
20.
Acharya
,
S.
,
Dutta
,
S.
,
Myrum
,
T. A.
, and
Baker
,
R. S.
,
1994
, “
Turbulent Flow Past a Surface-Mounted Two-Dimensional Rib
,”
ASME J. Fluids Eng.
,
116
(
2
), pp.
238
246
.
21.
Hwang
,
R. R.
,
Chow
,
Y. C.
, and
Chiang
,
T. P.
,
1999
, “
Numerical Predictions of Turbulent Flow Over a Surface-Mounted Rib
,”
J. Eng. Mech.
,
125
(
5
), pp.
497
503
.
22.
Antoniou
,
J.
, and
Bergeles
,
G.
,
1988
, “
Development of the Reattachment Flow Behind Surface-Mounted Two-Dimensional Prisms
,”
ASME J. Fluids Eng.
,
110
(
2
), pp.
127
133
.
23.
Acharya
,
S.
,
Myrum
,
T. A.
, and
Dutta
,
S.
,
1998
, “
Heat Transfer in Turbulent Flow Past a Surface-Mounted Two-Dimensional Rib
,”
ASME J. Heat Transfer
,
120
(
3
), pp. 724–734.
24.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
1996
,
Fundamentals of Heat and Mass Transfer
,
3rd ed.
,
Wiley
,
New York
.
25.
Jørgensen
,
F. E.
,
2002
,
How to Measure Turbulence With Hot-Wire Anemometers: A Practical Guide
,
Dantec Dynamics
,
Skovlunde, Denmark
.
26.
Figliola
,
R. S.
, and
Beasley
,
D. E.
,
2011
,
Theory and Design for Mechanical Measurements
,
5th ed.
,
Wiley
,
New York
.
27.
Tariq
,
A.
,
Panigrahi
,
P. K.
, and
Muralidhar
,
K.
,
2004
, “
Flow and Heat Transfer in the Wake of a Surface-Mounted Rib With a Slit
,”
Exp. Fluids
,
37
(
5
), pp.
701
719
.
28.
Clauser
,
F. H.
,
1956
, “
Turbulent Boundary Layer
,”
Adv. Appl. Mech.
,
4
, pp.
1
51
.
29.
Shin
,
J. H.
, and
Song.
,
S. J.
,
2015
, “
Pressure Gradient Effects on Smooth-and Rough-Surface Turbulent Boundary Layers—Part I: Favorable Pressure Gradient
,”
ASME J. Fluids Eng.
,
137
(
1
), p.
011203
.
30.
Shin
,
J. H.
, and
Song.
,
S. J.
,
2015
, “
Pressure Gradient Effects on Smooth-and Rough-Surface Turbulent Boundary Layers—Part II: Adverse Pressure Gradient
,”
ASME J. Fluids Eng.
,
137
(
1
), p.
011204
.
31.
Antonia
,
R. A.
, and
Luxton
,
R. E.
,
1972
, “
The Response of a Turbulent Boundary Layer to a Step Change in Surface Roughness—Part 2: Rough-to-Smooth
,”
J. Fluid Mech.
,
53
(
4
), pp.
737
757
.
32.
DeGraaff
,
D. B.
, and
Eaton
,
J. K.
,
2000
, “
Reynolds-Number Scaling of the Flat-Plate Turbulent Boundary Layer
,”
J. Fluid Mech.
,
422
, pp.
319
346
.
33.
Hancock
,
P. E.
, and
Bradshaw
,
P.
,
1983
, “
The Effect of Free-Stream Turbulence on Turbulent Boundary Layer
,”
ASME J. Fluids Eng.
,
105
(
3
), pp.
284
289
.
34.
Sucec
,
J.
,
2014
, “
An Integral Solution for Skin Friction in Turbulent Flow Over Aerodynamically Rough Surfaces With an Arbitrary Pressure Gradient
,”
ASME J. Fluids Eng.
,
136
(
8
), p.
081103
.
35.
Saturdi
, and
Ching
,
C. Y.
,
1999
, “
Effect of a Transverse Square Groove on a Turbulent Boundary Layer
,”
Exp. Therm. Fluid Sci.
,
20
(
1
), pp.
1
10
.
36.
Barrett
,
M. J.
, and
Hollingsworth
,
D. K.
,
2001
, “
On the Calculation of Length Scales for Turbulent Heat Transfer Correlation
,”
ASME J. Heat Transfer
,
123
(
5
), pp.
878
883
.
37.
Carullo
,
J. S.
,
Nasir
,
S.
,
Cress
,
R. D.
,
Ng
,
W. F.
,
Thole
,
K. A.
,
Zhang
,
L. J.
, and
Moon
,
H. K.
,
2011
, “
The Effects of Freestream Turbulence, Turbulence Length Scale, and Exit Reynolds Number on Turbine Blade Heat Transfer in a Transonic Cascade
,”
ASME J. Turbomach.
,
133
(
1
), p.
011030
.
38.
Sak
,
C.
,
Liu
,
R.
,
Ting
,
D. S.-K.
, and
Rankin
,
G. W.
,
2007
, “
The Role of Turbulence Length Scale and Turbulence Intensity on Forced Convection From a Heated Horizontal Circular Cylinder
,”
Exp. Therm. Fluid Sci.
,
31
(
4
), pp.
279
289
.
39.
Hinze
,
J. O.
,
1975
,
Turbulence
,
2nd ed.
,
McGraw-Hill
,
New York
.
40.
Taylor
,
G. I.
,
1938
, “
The Spectrum of Turbulence
,”
Proc. R. Soc. London, Ser. A
,
164
(
919
), pp.
476
490
.
41.
Dennis
,
D. J. C.
, and
Nickels
,
T. B.
,
2008
, “
On the Limitations of Taylor's Hypothesis in Constructing Long Structures in a Turbulent Boundary Layer
,”
J. Fluid Mech.
,
614
, pp.
197
206
.
42.
Lin
,
C. C.
,
1953
, “
On Taylor's Hypothesis and the Acceleration Terms in the Navier–Stokes Equation
,”
Q. Appl. Math.
,
10
(
4
), pp.
295
306
.
43.
Lumley
,
J. L.
,
1965
, “
Interpretation of Time Spectra Measured in High-Intensity Shear Flows
,”
Phys. Fluids
,
8
(
6
), pp.
1056
1062
.
44.
Builtjes
,
P. J. H.
,
1975
, “
Determination of the Eulerian Longitudinal Integral Length Scale in a Turbulent Boundary Layer
,”
Appl. Sci. Res.
,
31
(
5
), pp.
397
399
.
You do not currently have access to this content.