We address the reconstruction of relevant two-dimensional (2D) flows in drinking water networks, especially in key elements such as pipe junctions, in view of representative water quality simulations. From the optimal control theory, a specific inverse technique using few sensors and computational fluid dynamics (CFD) models has been developed. First, we determine the boundary velocities, i.e., the control parameters, by minimizing a data misfit functional. Then, knowing the boundary velocities, a direct solve of the flow model is performed to get the space–time cartography of the water flow. To reduce the number of control parameters to be determined and thus restrict the number of sensors, the spatial shape of the boundary velocities is considered as an a priori information given by the water pipes engineering literature. Thus, only the time evolution of the boundary velocities has to be determined. The whole numerical procedure proposed in this paper easily fits in a general purpose finite element software, featuring user's friendliness for a wide engineering audience. Two ways are investigated to reduce the computation time associated to the flow reconstruction. The adjoint framework is used in the minimization process. The reconstruction of the flow using coarse discretizations and simple flow models, instead of 2D Navier–Stokes equations, is studied. The influence of the flow modeling and of the dicretization on the quality of the reconstructed velocity is studied on two examples: a water pipe junction and a 200 m subsection from a French water network. In the water pipe junction, we show that at a Reynolds number of 200 a hybrid approach combining an unsteady Stokes reconstruction and a single direct Navier–Stokes simulation outperforms the algorithms based on a single model. In the network subsection, we obtain an L2 error less than 1% between the reference velocity based on Navier–Stokes equations (Reynolds number of 200) and the velocity reconstructed from Stokes equation. In this case, the reconstruction lasts less than 1 min. Stokes based reconstruction of a Navier–Stokes flow in junctions at Reynolds number up to 100 yields the same accuracy and proves fast.

References

References
1.
Rossman
,
L. A.
,
2000
,
epanet Users' Manual
,
U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Office of Research and Development
,
Cincinnati, OH
.
2.
Cembrano
,
G.
,
Wells
,
G.
,
Quevedo
,
J.
,
Perez
,
R.
, and
Argelaguet
,
R.
,
2000
, “
Optimal Control of a Water Distribution Network in a Supervisory Control System
,”
Control Eng. Practise
,
8
(
10
), pp.
1177
1188
.
3.
Constans
,
S.
,
Bremond
,
B.
, and
Morel
,
P.
,
2003
, “
Simulation and Control of Chlorine Levels in Water Distribution Networks
,”
J. Water Resour. Plann. Manage.
,
129
(
2
), pp.
135
145
.
4.
Fabrie
,
P.
,
Gancel
,
G.
,
Mortazavi
,
I.
, and
Piller
,
O.
,
2010
, “
Quality Modeling of Water Distribution Systels Using Sensitivity Equations
,”
J. Hydraul. Eng.
,
136
(
1
), pp.
34
44
.
5.
Vreeburg
,
J.
, and
Boxall
,
J.
,
2007
, “
Discolouration in Potable Water Distribution Systems: A Review
,”
Water Res.
,
41
(
3
), pp.
519
529
.
6.
Blokker
,
E.
,
Vreeburg
,
J.
,
Buchberger
,
S.
, and
van Dijk
,
J.
,
2008
, “
Importance of Demand Modelling in Network Water Quality Models: A Review
,”
Drinking Water Eng. Sci.
,
1
, pp.
27
38
.
7.
Sanders
,
B. F.
, and
Katopodes
,
N. D.
,
2000
, “
Adjoint Sensitivity Analysis for Shallow-Water Wave Control
,”
J. Eng. Mech.
,
126
(
9
), pp.
909
919
.
8.
Gejadze
,
I. Y.
, and
Copeland
,
G. J. M.
,
2006
, “
Open Boundary Control Problem for Navier–Stokes Equations Including a Free Surface: Data Assimilation
,”
Comput. Math. Appl.
,
52
(
8–9
), pp.
1269
1288
.
9.
Muccino
,
J.
,
Arango
,
H. G.
,
Bennett
,
A.
,
Chua
,
B. S.
,
Cornuelle
,
B.
,
Lorenzo
,
E.
,
Egbert
,
G. D.
,
Haidvogel
,
D.
,
Levin
,
J. C.
,
Luo
,
H.
,
Miller
,
A. J.
,
Moore
,
A. M.
, and
Zaron
,
E. D.
,
2008
, “
The Inverse Ocean Modeling System. Part II: Applications
,”
J. Atmos. Oceanic Technol.
,
25
(9), pp.
1623
1637
.
10.
Schneiderbauer
,
S.
, and
Pirker
,
S.
,
2011
, “
Determination of Open Boundary Conditions for Computational Fluid Dynamics (CFD) From Interior Observations
,”
Appl. Math. Modell.
,
35
(
2
), pp.
763
780
.
11.
Prudhomme
,
C.
,
Rovas
,
D.
,
Veroy
,
K.
,
Machiels
,
L.
,
Maday
,
Y.
,
Patera
,
A.
, and
Turinici
,
G.
,
2002
, “
Reliable Real-Time Solution of Parametrized Partial Differential Equations: Reduced-Basis Output Bound Methods
,”
ASME J. Fluids Eng.
,
124
(
1
), pp.
70
80
.
12.
Patnaik
,
G.
,
Boris
,
J.
,
Young
,
T.
, and
Grinstein
,
F.
,
2007
, “
Large Scale Urban Contaminant Transport Simulations With Miles
,”
ASME J. Fluids Eng.
,
129
(
12
), pp.
1524
1532
.
13.
Babuska
,
I.
, and
Rheinboldt
,
W.
,
1978
, “
Error Estimates for Adaptative Finite Element Computations
,”
SIAM J. Numer. Anal.
,
15
(
4
), pp.
736
754
.
14.
Ladevèze
,
P.
, and
Leguillon
,
D.
,
1983
, “
Error Estimate Procedure in the Finite Element Method and Applications
,”
SIAM J. Numer. Anal.
,
20
(
3
), pp.
485
509
.
15.
Zienkiewicz
,
O.
, and
Zhu
,
J.
,
1987
, “
A Simple Error Estimator and Adaptative Procedure for Practical Engineering Analysis
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
337
357
.
16.
Wu
,
J.
,
Zhu
,
J. Z.
,
Szmelter
,
J.
, and
Zienkiewicz
,
O.
,
1990
, “
Error Estimation and Adaptivity in Navier–Stokes Incompressible Flows
,”
Comput. Mech.
,
6
(
4
), pp.
259
270
.
17.
Paraschivoiu
,
M.
,
Peraire
,
J.
, and
Patera
,
A.
,
1997
, “
A Posteriori Finite Element Bounds for Linear-Functional Outputs of Elliptic Partial Differential Equations
,”
Comput. Methods Appl. Mech. Eng.
,
150
(
1
), pp.
289
312
.
18.
Ladevèze
,
P.
,
Rougeot
,
P.
,
Blanchard
,
P.
, and
Moreau
,
J.
,
1999
, “
Local Error Estimators for Finite Element Linear Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
176
(
1
), pp.
231
246
.
19.
Strouboulis
,
T.
,
Babuska
,
I.
,
Datta
,
D.
,
Copps
,
K.
, and
Gangaraj
,
S.
,
2000
, “
A Posteriori Estimation and Adaptive Control of the Error in the Quantity of Interest. Part I: A Posteriori Estimation of the Error in the Von Mises Stress and the Stress Intensity Factor
,”
Comput. Methods Appl. Mech. Eng.
,
181
(1–3), pp.
261
294
.
20.
Becker
,
R.
, and
Rannacher
,
R.
,
2001
, “
An Optimal Control Approach to a Posteriori Error Estimation in Finite Elements Methods
,”
Acta Numerica
,
10
, pp.
1
102
.
21.
Ladevèze
,
P.
, and
Waeytens
,
J.
,
2009
, “
Model Verification in Dynamics Through Strict Upper Error Bounds
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
21–26
), pp.
1775
1784
.
22.
Waeytens
,
J.
,
Chamoin
,
L.
, and
Ladevèze
,
P.
,
2012
, “
Guaranteed Error Bounds on Pointwise Quantities of Interest for Transient Viscodynamics Problems
,”
Comput. Mech.
,
49
(
3
), pp.
291
307
.
23.
Stein
,
E.
, and
Ohnimus
,
S.
,
1999
, “
Anisotropic Discretization and Model-Error Estimation in Solid Mechanics by Local Neumann Problems
,”
Comput. Methods Appl. Mech. Eng.
,
176
(
1
), pp.
363
385
.
24.
Oden
,
J. T.
, and
Prudhomme
,
S.
,
2002
, “
Estimation of Modeling Error in Computational Mechanics
,”
J. Comput. Phys.
,
182
(
2
), pp.
496
515
.
25.
Braack
,
M.
, and
Ern
,
A.
,
2003
, “
A Posteriori Control of Modeling Errors and Discretization Errors
,”
Multiscale Model. Simul.
,
1
(
2
), pp.
221
238
.
26.
Jameson
,
A.
,
1988
, “
Aerodynamic Design via Control Theory
,”
J. Sci. Comput.
,
3
(
3
), pp.
233
260
.
27.
Andrews
,
M.
,
2013
, “
The Use of Dual-Number-Automatic-Differentiation With Sensitivity Analysis to Investigate Physical Models
,”
ASME J. Fluids Eng.
,
135
(
6
), p.
061206
.
28.
Giles
,
M.
, and
Pierce
,
N.
,
1997
, “
Adjoint Equations in CFD—Duality, Boundary Conditions and Solution Behaviour
,”
AIAA
Paper No. 97-1850.
29.
Gunzburger
,
M.
,
2000
, “
Adjoint Equation-Based Methods for Control Problems in Incompressible, Viscous Flows
,”
Flow, Turbul. Combust.
,
65
(
3–4
), pp.
249
272
.
30.
Sykes
,
J.
,
Wilson
,
J.
, and
Andrews
,
R.
,
1985
, “
Sensitivity Analysis for Steady State Groundwater Flow Using Adjoint Operators
,”
Water Resour. Res.
,
21
(
3
), pp.
359
371
.
31.
von Karman
,
T.
,
1939
, “
The Analogy Between Fluid Friction and Heat Transfer
,”
Trans. Am. Soc. Mech. Eng.
,
61
(
8
), pp.
705
710
.
32.
Senecal
,
V. E.
, and
Rothfus
,
R. R.
,
1953
, “
Transitional Flow of Fluids in Smooth Tubes
,”
Chem. Eng. Prog.
,
49
, pp.
533
538
.
33.
Flint
,
L. F.
,
1967
, “
On the Velocity Profile for Turbulent Flow in a Straight Pipe
,”
Chem. Eng. Sci.
,
22
(
8
), pp.
1127
1131
.
34.
Glowinski
,
R.
, and
Lions
,
J.
,
1995
, “
Exact and Approximate Controllability for Distributed Parameter Systems
,”
Acta Numerica
,
4
, pp.
159
328
.
35.
Temam
,
R.
,
1984
,
Navier–Stokes Equations. Theory and Numerical Analysis
,
3rd ed.
,
North-Holland
,
Amsterdam
.
36.
Girault
,
V.
, and
Raviart
,
P. A.
,
1986
,
Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms
(Springer Series in Computational Mathematics),
Springer-Verlag
,
Berlin
.
37.
Zienkiewicz
,
O.
,
Taylor
,
R.
, and
Zhu
,
J.
,
2005
,
The Finite Element Method: Its Basis and Fundamentals
,
6th ed.
,
Elsevier
,
Amsterdam
.
38.
Nassiopoulos
,
A.
, and
Bourquin
,
F.
,
2010
, “
Fast Three-Dimensional Temperature Reconstruction
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
49–52
), pp.
3169
3178
.
39.
Bewley
,
T. R.
,
Temam
,
R.
, and
Ziane
,
M.
,
2000
, “
A General Framework for Robust Control in Fluid Mechanics
,”
Physica D
,
138
(3–4), pp.
360
392
.
40.
Hecht
,
F.
,
2012
, “
New Development in freefem ++
,”
J. Numer. Math.
,
20
(
3–4
), pp.
251
265
.
41.
Brezzi
,
F.
, and
Fortin
,
M.
,
1991
,
Mixed and Hybrid Finite Element Methods
,
Springer
,
Berlin
.
42.
Bourquin
,
F.
, and
Nassiopoulos
,
A.
,
2011
, “
Inverse Reconstruction of Initial and Boundary Conditions of a Heat Transfer Problem With Accurate Final State
,”
Int. J. Heat Mass Transfer
,
54
(
15
), pp.
3749
3760
.
43.
Morton
,
K. W.
,
1985
, “
Generalised Galerkin Methods for Hyperbolic Problems
,”
Comput. Methods Appl. Mech. Eng.
,
52
(
1–3
), pp.
847
871
.
44.
Pironneau
,
O.
,
Liou
,
J.
, and
Tezduyar
,
T. T. I.
,
1992
, “
Characteristic Galerkin and Galerkin Least Squares Space-Time Formulations for the Advection-Diffusion Equation With Time Dependent Domain
,”
Comput. Methods Appl. Mech. Eng.
,
100
(1), pp.
117
141
.
45.
Zienkiewicz
,
O.
,
Taylor
,
R.
, and
Zhu
,
J.
,
2005
,
The Finite Element Method: For Fluid Dynamics
,
6th ed.
,
Elsevier
,
Oxford
.
46.
Waeytens
,
J.
,
Chatellier
,
P.
, and
Bourquin
,
F.
,
2013
, “
Sensitivity of Inverse Advection-Diffusion-Reaction to Sensor and Control: A Low Computational Cost Tool
,”
Comput. Math. Appl.
,
6
(
66
), pp.
1082
1103
.
47.
Zymaris
,
A.
,
Papadimitriou
,
D.
,
Giannakoglou
,
K.
, and
Othmer
,
C.
,
2009
, “
Continuous Adjoint Approach to the Spalart-Allmaras Turbulence Model for Incompressible Flows
,”
Comput. Fluids
,
38
(
8
), pp.
1528
1538
.
48.
Johnson
,
C.
,
Nie
,
Y.-Y.
, and
Thomee
,
V.
,
1990
, “
An a Posteriori Error Estimate and Adaptive Timestep Control for a Backward Euler Discretization of a Parabolic Problem
,”
SIAM J. Numer. Anal.
,
27
(
2
), pp.
277
291
.
49.
Bernardi
,
C.
, and
Verfürth
,
R.
,
2004
, “
A Posteriori Error Analysis of the Fully Discretized Time-Dependent Stokes Equations
,”
ESAIM: Math. Modell. Numer. Anal.
,
38
(
3
), pp.
437
455
.
This content is only available via PDF.
You do not currently have access to this content.