The gas–liquid separator is a key component in the gas removal system in thorium molten salt reactor (TMSR). In this paper, an experimental study focusing on the gas core formation in the gas–liquid separator was carried out. We observed that formation of the air core depends primarily on the back pressure in the separator. Gas core formation was visualized for a range of back pressures, swirl numbers, and Reynolds numbers. Analysis of flow patterns indicated that gas core formation may be defined as four stages: “air core with suction,” “tadpole-shaped core,” “cloudy core,” and “rod core.” When rod core is achieved, gas bubbles will be separated completely and that particular back pressure is defined as critical back pressure. The critical back pressure depends on swirl number and Reynolds number. The trends how the critical back pressures vary with the Reynolds number and the swirl number were analyzed.

References

References
1.
Moir
,
R. W.
,
2008
, “
Recommendations for a Restart of Molten Salt Reactor Development
,”
Energy Convers. Manage.
,
49
(
7
), pp.
1849
1858
.10.1016/j.enconman.2007.07.047
2.
Flynn
,
T. A.
, and
Deboisblac
,
D. R.
,
1966
, “
1000 MW(e) Molten Salt Breeder Reactor Conceptual Design Study
,” Oak Ridge National Laboratory, Report No. TID-26156.
3.
Zhang
,
N.
,
Yan
,
C.
, and
Sun
,
L.
,
2013
, “
Experimental Study of a Gas Separator for MSR Gas Removal System
,”
Proceedings of the 21st International Conference on Nuclear Engineering
,
ICONE21, Chengdu
,
China
, July 29–Aug. 2.
4.
Neesse
,
T.
, and
Dueck
,
J.
,
2007
, “
Air Core Formation in the Hydrocyclone
,”
Miner. Eng.
,
20
(
4
), pp.
349
354
.10.1016/j.mineng.2007.01.007
5.
Wang
,
S. B.
,
Gomez
,
L.
,
Mohan
,
R.
,
Shoham
,
O.
,
Kouba
,
G.
, and
Marrelli
,
J.
,
2010
, “
The State-of-the-Art of Gas–Liquid Cylindrical Cyclone Control Technology: From Laboratory to Field
,”
ASME J. Energy Resour. Technol.
,
132
(
3
), p.
032701
.10.1115/1.4001900
6.
Hararah
,
M. A.
,
Endres
,
E.
,
Dueck
,
J.
,
Minkov
,
L.
, and
Neesse
,
T.
,
2010
, “
Flow Conditions in the Air Core of the Hydrocyclone
,”
Miner. Eng.
,
23
(
4
), pp.
295
300
.10.1016/j.mineng.2009.12.013
7.
Evans
,
W. K.
,
Suksangpanomrung
,
A.
, and
Nowakowski
,
A. F.
,
2008
, “
The Simulation of the Flow Within a Hydrocyclone Operating With an Air Core and With an Inserted Metal Rod
,”
Chem. Eng. J.
,
143
(
1–3
), pp.
51
61
.10.1016/j.cej.2007.12.023
8.
Syred
,
N.
, and
Roberts
,
P. J.
,
1979
, “
Use of Vortex Diode Applied to Post Accident Heat Removal Systems
,”
ASME Summer Annual Meeting
,
San Diego
,
CA
,
ASME
Paper No. 79-HT-9. 10.1115/79-HT-9
9.
Kress
,
T. S.
,
1972
, “
Mass Transfer Between Small Bubbles and Liquids in Concurrent Turbulent Pipe Flow
,” Ph.D. thesis,
University of Tennessee
,
Knoxville, TN
.
10.
Sripriya
,
R.
,
Suresh
,
N.
, and
Chandra
,
S.
,
2013
, “
The Effect of Diameter and Height of the Inserted Rod in a Dense Medium Cyclone to Suppress Air Core
,”
Miner. Eng.
,
42
, pp.
1
8
.10.1016/j.mineng.2012.11.003
11.
Rosenthal
,
M. W.
,
1972
, “
Molten Salt Reactor Program Semiannual Progress Report
,” Oak Ridge National Laboratory, Report No. ORNL-4548.
12.
Magaud
,
F.
,
Najafi
,
A. F.
,
Angilella
,
J. R.
, and
Souhar
,
M.
,
2014
, “
Modeling and Qualitative Experiments on Swirling Bubbly Flows: Single Bubble With Rossby Number of Order 1
,”
ASME J. Fluids Eng.
,
125
(
2
), pp.
239
246
.10.1115/1.1539870
13.
Shtork
,
S. I.
,
Vieira
,
N. F.
, and
Fernandes
,
E. C.
,
2008
, “
On the Identification of Helical Instabilities in a Reacting Swirling Flow
,”
Fuel
,
87
(
10–11
), pp.
2314
2321
.10.1016/j.fuel.2007.10.016
14.
Syred
,
N.
,
2006
, “
A Review of Oscillation Mechanisms and the Role of the Precessing Vortex Core (PVC) in Swirl Combustion Systems
,”
Prog. Energy Combust.
,
32
(
2
), pp.
93
161
.10.1016/j.pecs.2005.10.002
15.
Beer
,
J. M.
, and
Chiger
,
N. A.
,
1983
,
Combustion Aerodynamics
,
2nd ed.
,
Krieger R. Publishing Company
,
New York
.
16.
Dash
,
S. K.
,
Halder
,
M. R.
,
Peric
,
M.
, and
Som
,
S. K.
,
2001
, “
Formation of Air Core in Nozzles With Tangential Entry
,”
ASME J. Fluids Eng.
,
123
(
4
), pp.
829
835
.10.1115/1.1412845
17.
Gupta
,
R.
,
Kaulaskar
,
M. D.
,
Kumar
,
V.
,
Sripriya
,
R.
,
Meikap
,
B. C.
, and
Chakraborty
,
S.
,
2008
, “
Studies on the Understanding Mechanism of Air Core and Vortex Formation in a Hydrocyclone
,”
Chem. Eng. J.
,
144
(
2
), pp.
153
166
.10.1016/j.cej.2008.01.010
You do not currently have access to this content.