Flow over a circular cylinder at a Reynolds number of 3900 is investigated using large eddy simulations (LES) to assess the affect of four numerical parameters on the resulting flow-field. These parameters are subgrid scale (SGS) turbulence models, wall models, discretization of the advective terms in the governing equations, and grid resolution. A finite volume method is employed to solve the incompressible Navier–Stokes equations (NSE) on a structured grid. Results are compared to the experiments of Ong and Wallace (1996, “The Velocity Field of the Turbulent Very Near Wake of a Circular Cylinder,” Exp. Fluids, 20(6), pp. 441–453) and Lourenco and Shih (1993, “Characteristics of the Plane Turbulent Near Wake of a Circular Cylinder: A Particle Image Velocimetry Study,” private communication (taken from Ref. [2]); and the numerical results of Beaudan and Moin (1994, “Numerical Experiments on the Flow Past a Circular Cylinder at Sub-Critical Reynolds Number,” Technical Report No. TF-62), Kravchenko and Moin (2000, “Numerical Studies of Flow Over a Circular Cylinder at ReD = 3900,” Phys. Fluids, 12(2), pp. 403–417), and Breuer (1998, “Numerical and Modelling Influences on Large Eddy Simulations for the Flow Past a Circular Cylinder,” Int. J. Heat Fluid Flow, 19(5), pp. 512–521). It is concluded that the effect of the SGS models is not significant; results with and without a wall model are inconsistent; nondissipative discretization schemes, such as central finite difference methods, are preferred over dissipative methods, such as upwind finite difference methods; and it is necessary to properly resolve the boundary layer in the vicinity of the cylinder in order to accurately model the complex flow phenomena in the cylinder wake. These conclusions are based on the analysis of bulk flow parameters and the distribution of mean and fluctuating quantities throughout the domain. In general, results show good agreement with the experimental and numerical data used for comparison.

References

References
1.
Beaudan
,
P.
, and
Moin
,
P.
,
1994
, “
Numerical Experiments on the Flow Past a Circular Cylinder at Sub-Critical Reynolds Number
,” Technical Report No. TF-62.
2.
Kravchenko
,
A. G.
, and
Moin
,
P.
,
2000
, “
Numerical Studies of Flow Over a Circular Cylinder at ReD = 3900
,”
Phys. Fluids
,
12
(
2
), pp.
403
417
.10.1063/1.870318
3.
Ma
,
X.
,
Karamanos
,
G.
, and
Karniadakis
,
G.
,
2000
, “
Dynamics and Low-Dimensionality of a Turbulent Near Wake
,”
J. Fluid Mech.
,
410
, pp.
29
65
.10.1017/S0022112099007934
4.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
J. Comput. Phys.
,
12
(
6
), pp.
620
631
.10.1063/1.168744
5.
Lysenko
,
D. A.
,
Ertesvåg
,
I. S.
, and
Rian
,
K. E.
,
2012
, “
Large-Eddy Simulation of the Flow Over a Circular Cylinder at Reynolds Number 3900 Using the OpenFOAM Toolbox
,”
Flow Turbul. Combust.
,
89
(
4
), pp.
491
518
.10.1007/s10494-012-9405-0
6.
Young
,
M.
, and
Ooi
,
A.
,
2007
, “
Comparative Assessment of LES and URANS for Flow Over a Cylinder at a Reynolds Number of 3900
,”
Sixteenth Australasian Fluid Mechanics Conference
, pp.
1063
1070
.
7.
Blackburn
,
H.
, and
Schmidt
,
S.
,
2001
, “
Large Eddy Simulation of Flow Past a Circular Cylinder
,”
14th Australasian Fluid Mechanics Conference
, pp.
689
692
.
8.
Williamson
,
C. H. K.
,
1996
, “
Vortex Dynamics in the Cylinder Wake
,”
Annu. Rev. Fluid Mech.
,
28
, pp.
477
539
.10.1146/annurev.fl.28.010196.002401
9.
Roshko
,
A.
,
1954
, “
On the Development of Turbulent Wakes From Vortex Streets
,” NACA Technical Note No. 1191, pp.
1
25
.
10.
Mittal
,
R.
, and
Balachandar
,
S.
,
1995
, “
Effect of Three-Dimensionality on the Lift and Drag of Nominally Two-Dimensional Cylinders
,”
Phys. Fluids
,
7
(
8
), pp.
1841
1865
.10.1063/1.868500
11.
Norberg
,
C.
,
1987
, “
Effects of Reynolds Number and Low-Intensity Free Stream Turbulence on the Flow Around a Circular Cylinder
,” Chalmers University of Technology, Göteborg, Sweden, Publication No. 87/2.
12.
Lourenco
,
L. M.
, and
Shih
,
C.
,
1993
, “
Characteristics of the Plane Turbulent Near Wake of a Circular Cylinder: A Particle Image Velocimetry Study
,” private communication (taken from Ref. [2]).
13.
Ong
,
L.
, and
Wallace
,
J.
,
1996
, “
The Velocity Field of the Turbulent Very Near Wake of a Circular Cylinder
,”
Exp. Fluids
,
20
(
6
), pp.
441
453
.10.1007/BF00189383
14.
Franke
,
J.
, and
Frank
,
W.
,
2002
, “
Large Eddy Simulation of the Flow Past a Circular Cylinder at Red=3900
,”
J. Wind Eng. Ind. Aerodyn.
,
90
(
10
), pp.
1191
1206
.10.1016/S0167-6105(02)00232-5
15.
Krajnović
,
S.
,
2014
, “
Large Eddy Simulation Exploration of Passive Flow Control Around an Ahmed Body
,”
ASME J. Fluids Eng.
,
136
(
12
), p.
121103
.10.1115/1.4027221
16.
Mittal
,
R.
, and
Moin
,
P.
,
1996
, “
Large-Eddy Simulation of Flow Past a Circular Cylinder
,”
APS Bull.
,
41
(
9
), 49th DFD Meeting.
17.
Breuer
,
M.
,
1998
, “
Numerical and Modelling Influences on Large Eddy Simulations for the Flow Past a Circular Cylinder
,”
Int. J. Heat Fluid Flow
,
19
(
5
), pp.
512
521
.10.1016/S0142-727X(98)10015-2
18.
Mittal
,
R.
,
1996
, “
Progress on LES of Flow Past a Circular Cylinder
,” Center for Turbulence Research Annual Research Briefs, pp.
233
241
.
19.
Mani
,
A.
,
Moin
,
P.
, and
Wang
,
M.
,
2009
, “
Computational Study of Optical Distortions by Separated Shear Layers and Turbulent Wakes
,”
J. Fluid Mech.
,
625
, pp.
273
298
.10.1017/S0022112008005697
20.
Meyer
,
M.
,
Hickel
,
S.
, and
Adams
,
N. A.
,
2010
, “
Assessment of Implicit Large-Eddy Simulation With a Conservative Immersed Interface Method for Turbulent Cylinder Flow
,”
Int. J. Heat Fluid Flow
,
31
(
3
), pp.
368
377
.10.1016/j.ijheatfluidflow.2010.02.026
21.
Parnaudeau
,
P.
,
Carlier
,
J.
,
Heitz
,
D.
, and
Lamballais
,
E.
,
2008
, “
Experimental and Numerical Studies of the Flow Over a Circular Cylinder at Reynolds Number 3900
,”
Phys. Fluids
,
20
(
8
), p.
085101
.10.1063/1.2957018
22.
Ouvrard
,
H.
,
Koobus
,
B.
,
Dervieux
,
A.
, and
Salvetti
,
M. V.
,
2010
, “
Classical and Variational Multiscale LES of the Flow Around a Circular Cylinder on Unstructured Grids
,”
J. Comput. Phys.
,
39
(
7
), pp.
1083
1094
.10.1016/j.compfluid.2010.01.017
23.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations I. The Basic Experiment
,”
Mon. Weather Rev.
,
91
(
3
), pp.
99
164
.10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
24.
Ferziger
,
J. H.
, and
Perić
,
M.
,
2002
,
Computational Methods for Fluid Dynamics
,
Springer-Verlag
, Berlin.10.1007/978-3-642-56026-2
25.
Piomelli
,
U.
,
Ferziger
,
J. H.
,
Moin
,
P.
, and
Kim
,
J.
,
1989
, “
New Approximate Boundary Conditions for Large Eddy Simulations of Wall-Bounded Flows
,”
Phys. Fluids A
,
1
(
6
), pp.
1061
1068
.10.1063/1.857397
26.
de Villiers
,
E.
,
2006
, “
The Potential of Large Eddy Simulation for the Modeling of Wall Bounded Flows
,” Ph.D. thesis, Thermofluids Section, Department of Mechanical Engineering, Imperial College of Science, Technology and Medicine, London.
27.
Fureby
,
C.
,
1996
, “
On Subgrid Scale Modeling in Large Eddy Simulations of Compressible Fluid Flow
,”
Phys. Fluids
,
8
(
5
), pp.
1301
1311
.10.1063/1.868900
28.
Fureby
,
C.
,
Tabor
,
G.
,
Weller
,
H. G.
, and
Gosman
,
A. D.
,
1997
, “
A Comparative Study of Subgrid Scale Models in Homogeneous Isotropic Turbulence
,”
Phys. Fluids
,
9
(
5
), pp.
1416
1429
.10.1063/1.869254
29.
Spalding
,
D. B.
,
1961
, “
A Single Formula for the Law of the Wall
,”
ASME J. Appl. Mech.
,
28
(
3
), pp.
455
458
.10.1115/1.3641728
30.
Cardell
,
G. S.
,
1993
, “
Flow Past a Circular Cylinder With a Permeable Splitter Plate
,” Ph.D. thesis, Graduate Aeronautical Laboratories, California Institute of Technology, Pasadena, CA.
31.
Son
,
J.
, and
Hanratty
,
T. J.
,
1969
, “
Velocity Gradients at the Wall for Flow Around a Cylinder at Reynolds Numbers 5×103 to 105
,”
J. Fluid Mech.
,
35
(
2
), pp.
353
368
.10.1017/S0022112069001157
32.
Dong
,
S.
,
Karniadakis
,
G. E.
,
Ekmekci
,
A.
, and
Rockwell
,
D.
,
2006
, “
A Combined Direct Numerical Simulation Particle Image Velocimetry Study of the Turbulent Air Wake
,”
J. Fluid Mech.
,
569
, pp.
185
207
.10.1017/S0022112006002606
33.
Widjaja
,
R.
,
2010
, “
Computational Wake Acoustics: Effects of Freestream Disturbances on Wake Structure and Sound Emission
,” Ph.D. thesis, Department of Mechanical Engineering, The University of Melbourne, Melbourne, Australia.
You do not currently have access to this content.