The active control of the leading-edge (LE) separation on the suction surface of a stalled airfoil (NACA 0012) at a Reynolds number of 106 based on the chord length is investigated through a computational study. The actuator is a steady or unsteady jet located on the suction surface of the airfoil. Unsteady Reynolds-Averaged Navier–Stokes (URANS) equations are solved on hybrid meshes with the Spalart–Allmaras turbulence model. Simulations are used to characterize the effects of the steady and unsteady actuation on the separated flows for a large range of angle of attack (0 < α < 28 deg). Parametric studies are carried out in the actuator design-space to investigate the control effectiveness and robustness. An optimal actuator position, angle, and frequency for the stalled angle of attack α = 19 deg are found. A significant increase of the lift coefficient is obtained (+ 84% with respect to the uncontrolled reference flow), and the stall is delayed from angle of attack of 18 deg to more than 25 deg. The physical nonlinear coupling between the actuator position, velocity angle, and frequency is investigated. The critical influence of the actuator location relative to the separation location is emphasized.

References

1.
Fiedler
,
H. E.
, and
Fernholz
,
H. H.
,
1990
, “
On Management and Control of Turbulent Shear Flows
,”
Prog. Aeronaut. Sci.
,
27
(
4
), pp.
305
387
.10.1016/0376-0421(90)90002-2
2.
Gad-el-Hak
,
M.
,
1996
, “
Modern Developments in Flow Control
,”
ASME Appl. Mech. Rev.
,
49
(
7
), pp.
365
379
.10.1115/1.3101931
3.
Gad-el-Hak
,
M.
,
2000
,
Flow Control: Passive, Active and Reactive Flow Management
,
Cambridge University
,
London
.
4.
Glezer
,
A.
, and
Amitay
,
M.
,
2002
, “
Synthetic Jets
,”
ARFM
,
34
, pp.
503
529
.10.1146/annurev.fluid.34.090501.094913
5.
Cattafesta
,
L. N.
, and
Sheplak
,
M.
,
2011
, “
Actuators for Active Flow Control
,”
ARFM
,
43
, pp.
247
272
.10.1146/annurev-fluid-122109-160634
6.
Corke
,
T. C.
,
Lon Enloe
,
C.
, and
Wilkinson
,
S. P.
,
2010
, “
Dielectric Barrier Discharge Plasma Actuators for Flow Control
,”
ARFM
,
42
, pp.
505
529
.10.1146/annurev-fluid-121108-145550
7.
Seifert
,
A.
,
Darabi
,
A.
, and
Wygnanski
,
I.
,
1996
, “
Delay of Airfoil Stall by Periodic Excitation
,”
J. Aircr.
,
33
(
4
), pp.
691
698
.10.2514/3.47003
8.
Darabi
,
A.
, and
Wygnanski
,
I.
,
2004
, “
Active Management of Naturally Separated Flow Over a Solid Surface. Part 2. The Separation Process
,”
J. Fluid Mech.
,
510
, pp.
131
144
.10.1017/S0022112004009243
9.
Darabi
,
A.
, and
Wygnanski
,
I.
,
2004
, “
Active Management of Naturally Separated Flow Over a Solid Surface. Part 1. The Forced Reattachment Process
,”
J. Fluid Mech.
,
510
, pp.
105
129
.10.1017/S0022112004009231
10.
Orlov
,
D. M.
,
Apker
,
T.
,
He
,
C.
,
Othman
,
H.
, and
Corke
,
T. C.
,
2007
, “
Modeling and Experiment of Leading-Edge Separation Control Using SDBD Plasma Actuators
,”
AIAA
Paper No. 2007-0877. 10.1.1.475.1595
11.
Corke
,
T. C.
,
Post
,
M. L.
, and
Orlov
,
D. M.
,
2009
, “
Single Dielectric Barrier Discharge Plasma Enhanced Aerodynamics: Physics, Modeling and Applications
,”
Exp. Fluids
,
46
(
1
), pp.
1
26
.10.1007/s00348-008-0582-5
12.
Wu
,
J. Z.
,
Lu
,
X. Y.
,
Denny
,
A. G.
,
Fan
,
M.
, and
Wu
,
J. M.
,
1998
, “
Post-Stall Flow Control on an Airfoil by Local Unsteady Forcing
,”
J. Fluid Mech.
,
371
, pp.
21
58
.10.1017/S0022112098002055
13.
Duvigneau
,
R.
, and
Visonneau
,
M.
,
2006
, “
Simulation and Optimization of Stall Control for an Airfoil With a Synthetic Jet
,”
Aerosp. Sci. Technol.
,
10
(
4
), pp.
279
287
.10.1016/j.ast.2006.01.002
14.
Duvigneau
,
R.
, and
Visonneau
,
M.
,
2006
, “
Optimization of a Synthetic Jet Actuator for Aerodynamic Stall Control
,”
Comput. Fluids
,
35
(
6
), pp.
624
638
.10.1016/j.compfluid.2005.01.005
15.
Duvigneau
,
R.
,
Hay
,
A.
, and
Visonneau
,
M.
,
2007
, “
Optimal Location of a Synthetic Jet on an Airfoil for Stall Control
,”
J. Fluid Eng.
,
129
(
7
), pp.
825
833
.10.1115/1.2742729
16.
Huang
,
L.
,
Huang
,
P. G.
,
LeBeau
,
R. P.
, and
Hauser
,
T.
,
2004
, “
Numerical Study of Blowing and Suction Control Mechanism on a NACA 0012 Airfoil
,”
J. Aircr.
,
41
(
5
), pp.
1005
1013
.10.2514/1.2255
17.
Fernholz
,
H. H.
, and
Urzynicok
,
F.
,
2006
, “
Control of Weak and Strong Reverse-Flow Regions
,”
Control of Fluid Flow
,
Springer
, Berlin, pp.
1
44
.10.1007/978-3-540-36085-8
18.
Zhang
,
M. M.
,
Zhou
,
Y.
, and
Cheng
,
L.
,
2008
, “
Control of Post-Stall Airfoil Aerodynamics Based on Surface Perturbation
,”
AIAA J.
,
46
(
10
), pp.
2510
2519
.10.2514/1.35792
19.
2013
,
Fluent User's Guide and Reference Manuals
, Version 6.3.
20.
Spalart
,
P. M.
, and
Allmaras
,
S. R.
,
1994
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
La Rech. Aérosp.
,
1
, pp.
5
21
.
21.
2003
,
Gambit User's Guide and Reference Manuals
, Version 2.3.
22.
Chapin
,
V. G.
,
Jamme
,
S.
, and
Chassaing
,
P.
,
2005
, “
Viscous Computational Fluid Dynamics as a Relevant Decision-Making Tool for Mast-Sail Aerodynamics
,”
Marine Technol.
,
42
(
1
), pp.
1
10
.
23.
Abbott
,
V.
, and
Doenhoff
,
S.
,
2005
,
Theory of Wing Sections
,
Dover Editions
, New York, p.
123
.
24.
Critzos
,
C. C.
,
Heyson
,
H. H.
, and
Boswinkle
,
R. W.
,
1955
, “
Aerodynamic Characteristics of a NACA 0012 Airfoil Section at Angles of Attack From 0 deg to 180 deg
,” Report No. NASA TN3361.
25.
Harris
,
C. D.
,
1981
, “
Two-Dimensional Aerodynamic Characteristics of the NACA0012 Airfoil in the Langley 8-Foot Transonic Pressure Tunnel
,” NASA Technical Memorandum No. 81927.
26.
Jacobs
,
E.
, and
Sherman
,
A.
,
1937
, “
Airfoil Section Characteristics as Affected by Variations of the Reynolds Number
,” NACA Report No. 586, p. 231.
27.
Ericsson
,
P. M.
, and
Reding
,
S. R.
,
1977
, “
Further Consideration of ‘Spilled’ Leading-Edge Vortex Effects on Dynamic Stall
,”
J. Aircr.
,
14
(
6
), pp.
601
603
.10.2514/3.58827
28.
Gilarranz
,
J.
,
Traub
,
L.
, and
Rediniotis
,
O.
,
2002
, “
Characterization of a Compact, High Power Synthetic Jet Actuator for Flow Separation Control
,”
AIAA
Paper No. 2002-0127.
29.
Sosa
,
R.
,
Artana
,
G.
, and
Moreau
,
E.
,
2007
, “
Stall Control at High Angle of Attack With Plasma Sheet Actuators
,”
Exp. Fluids
,
42
, pp.
143
167
.10.1007/s00348-006-0227-5
30.
Rosas
,
C. R.
,
2005
, “
Numerical Simulation of a Flow Separation Control by Oscillatory Fluid Injection
,” Thesis report, Texas A&M University, College Station, TX.
31.
Raju
,
R.
,
Mittal
,
R.
, and
Cattafesta
,
L. N.
,
2007
, “
Towards Physics Based Strategies for Separation Control Over an Airfoil Using Synthetic Jets
,”
AIAA
Paper No. 2007-1421. 10.2514/6.2007-1421
32.
Shyy
,
W.
,
Papila
,
N.
,
Vaidyanathan
,
R.
, and
Tucker
,
K.
,
2007
, “
Global Design Optimization for Aerodynamics and Rocket Propulsion Components
,”
Prog. Aerosp. Sci.
,
37
, pp.
59
118
.10.1016/S0376-0421(01)00002-1
You do not currently have access to this content.