Topology optimization method is applied to a contraction–expansion structure, based on which a simplified lateral flow structure is generated using the Boolean operation. A new one-layer mixer is then designed by sequentially connecting this lateral structure and bent channels. The mixing efficiency is further optimized via iterations on key geometric parameters associated with the one-layer mixer designed. Numerical results indicate that the optimized mixer has better mixing efficiency than the conventional contraction–expansion mixer for a wide range of the Reynolds number.

References

References
1.
Lee
,
C.-Y.
,
Chang
,
C.-L.
,
Wang
,
Y.-N.
, and
Fu
,
L.-M.
,
2011
, “
Microfluidic Mixing: A Review
,”
Int. J. Mol. Sci.
,
12
(
5
), pp.
3263
3287
.
2.
Cartier
,
C. A.
,
Drews
,
A. M.
, and
Bishop
,
K. J. M.
,
2014
, “
Microfluidic Mixing of Nonpolar Liquids by Contact Charge Electrophoresis
,”
Lab Chip
,
14
(
21
), pp.
4230
4236
.
3.
Afzal
,
A.
, and
Kim
,
K.-Y.
,
2012
, “
Passive Split and Recombination Micromixer With Convergentcdivergent Walls
,”
Chem. Eng. J.
,
203
, pp.
182
192
.
4.
Ammar
,
H.
,
Ould el Moctar
,
A.
,
Garnier
,
B.
, and
Peerhossaini
,
H.
,
2014
, “
Flow Pulsation and Geometry Effects on Mixing of Two Miscible Fluids in Microchannels
,”
ASME J. Fluids Eng.
,
136
(
12
), p.
121101
.
5.
Karami
,
M.
,
Shirani
,
E.
,
Jarrahi
,
M.
, and
Peerhossaini
,
H.
,
2014
, “
Mixing by Time-Dependent Orbits in Spatiotemporal Chaotic Advection
,”
ASME J. Fluids Eng.
,
137
(
1
), p.
011201
.
6.
Maki
,
A.-J.
,
Hemmila
,
S.
,
Hirvonen
,
J.
,
Girish
,
N. N.
,
Kreutzer
,
J.
,
Hyttinen
,
J.
, and
Kallio
,
P.
,
2014
, “
Modeling and Experimental Characterization of Pressure Drop in Gravity-Driven Microfluidic Systems
,”
ASME J. Fluids Eng.
,
137
(
2
), p.
021105
.
7.
Mohammadi
,
M.
, and
Sharp
,
K. V.
,
2013
, “
Experimental Techniques for Bubble Dynamics Analysis in Microchannels: A Review
,”
ASME J. Fluids Eng.
,
135
(
2
), p.
021202
.
8.
Sen
,
A. K.
, and
Bhardwaj
,
P.
,
2012
, “
Microfluidic System for Rapid Enumeration and Detection of Microparticles
,”
ASME J. Fluids Eng.
,
134
(
11
), p.
111401
.
9.
Solovitz
,
S. A.
,
Zhao
,
J.
,
Xue
,
W.
, and
Xu
,
J.
,
2013
, “
Uniform Flow Control for a Multipassage Microfluidic Sensor
,”
ASME J. Fluids Eng.
,
135
(
2
), p.
021101
.
10.
Qian
,
S.
, and
Bau
,
H. H.
,
2002
, “
A Chaotic Electroosmotic Stirrer
,”
Anal. Chem.
,
74
(
15
), pp.
3616
3625
.
11.
Qian
,
S.
, and
Bau
,
H. H.
,
2005
, “
Magneto-Hydrodynamic Stirrer for Stationary and Moving Fluids
,”
Sens. Actuators B
,
106
(
2
), pp.
859
870
.
12.
Liang
,
L.
, and
Xuan
,
X.
,
2012
, “
Diamagnetic Particle Focusing Using Ferromicrofluidics With a Single Magnet
,”
Microfluid. Nanofluid.
,
13
(
4
), pp.
637
643
.
13.
Wen
,
C.-Y.
,
Liang
,
K.-P.
,
Chen
,
H.
, and
Fu
,
L.-M.
,
2011
, “
Numerical Analysis of a Rapid Magnetic Microfluidic Mixer
,”
Electrophoresis
,
32
(
22
), pp.
3268
3276
.
14.
Cardoso
,
V. F.
,
Knoll
,
T.
,
Velten
,
T.
,
Rebouta
,
L.
,
Mendes
,
P. M.
,
Lanceros-Mendez
,
S.
, and
Minas
,
G.
,
2014
, “
Polymer-Based Acoustic Streaming for Improving Mixing and Reaction Times in Microfluidic Applications
,”
RSC Adv.
,
4
(9), pp.
4292
4300
.
15.
SadAbadi
,
H.
,
Packirisamy
,
M.
, and
Wuthrich
,
R.
,
2013
, “
High Performance Cascaded pdms Micromixer Based on Split-and-Recombination Flows for Lab-On-A-Chip Applications
,”
RSC Adv.
,
3
(20), pp.
7296
7305
.
16.
Amini
,
H.
,
Lee
,
W.
, and
Di Carlo
,
D.
,
2014
, “
Inertial Microfluidic Physics
,”
Lab Chip
,
14
(
15
), pp.
2739
2761
.
17.
Zhang
,
J.
,
Li
,
W.
,
Li
,
M.
,
Alici
,
G.
, and
Nguyen
,
N.-T.
,
2014
, “
Particle Inertial Focusing and Its Mechanism in a Serpentine Microchannel
,”
Microfluid. Nanofluid.
,
17
(2), pp.
305
316
.
18.
Amini
,
H.
,
Sollier
,
E.
,
Masaeli
,
M.
,
Xie
,
Y.
,
Ganapathysubramanian
,
B.
,
Stone
,
H. A.
, and
Di Carlo
,
D.
,
2013
, “
Engineering Fluid Flow Using Sequenced Microstructures
,”
Nat. Commun.
,
4
, p.
1826
.
19.
Lee
,
M. G.
,
Choi
,
S.
, and
Park
,
J.-K.
,
2009
, “
Rapid Laminating Mixer Using a Contraction–Expansion Array Microchannel
,”
Appl. Phys. Lett.
,
95
(
5
), p.
051902
.
20.
Lee
,
M. G.
,
Choi
,
S.
, and
Park
,
J.-K.
,
2010
, “
Rapid Multivortex Mixing in an Alternately Formed Contraction-Expansion Array Microchannel
,”
Biomed. Microdevices
,
12
(
6
), pp.
1019
1026
.
21.
Lee
,
M. G.
,
Choi
,
S.
, and
Park
,
J. K.
,
2011
, “
Inertial Separation in a Contraction–Expansion Array Microchannel
,”
J. Chromatogr. A
,
1218
(
27
), pp.
4138
4143
.
22.
Lee
,
M. G.
,
Shin
,
J. H.
,
Bae
,
C. Y.
,
Choi
,
S.
, and
Park
,
J.-K.
,
2013
, “
Label-Free Cancer Cell Separation From Human Whole Blood Using Inertial Microfluidics at Low Shear Stress
,”
Anal. Chem.
,
85
(
13
), pp.
6213
6218
.
23.
Liu
,
Z.
,
Deng
,
Y.
,
Lin
,
S.
, and
Xuan
,
M.
,
2012
, “
Optimization of Micro Venturi Diode in Steady Flow at Low Reynolds Number
,”
Eng. Optim.
,
44
(
11
), pp.
1389
1404
.
24.
Deng
,
Y.
,
Liu
,
Z.
,
Zhang
,
P.
,
Liu
,
Y.
,
Gao
,
Q.
, and
Wu
,
Y.
,
2012
, “
A Flexible Layout Design Method for Passive Micromixers
,”
Biomed. Microdevices
,
14
(
5
), pp.
929
945
.
25.
Deng
,
Y.
,
Zhang
,
P.
,
Liu
,
Y.
,
Wu
,
Y.
, and
Liu
,
Z.
,
2013
, “
Optimization of Unsteady Incompressible Navier–Stokes Flows Using Variational Level Set Method
,”
Int. J. Numer. Methods Fluids
,
71
(
12
), pp.
1475
1493
.
26.
Borrvall
,
T.
, and
Petersson
,
J.
,
2003
, “
Topology Optimization of Fluids in Stokes Flow
,”
Int. J. Numer. Methods Fluids
,
41
(
1
), pp.
77
107
.
27.
Gersborg-Hansen
,
A.
,
Sigmund
,
O.
, and
Haber
,
R. B.
,
2005
, “
Topology Optimization of Channel Flow Problems
,”
Struct. Multidiscip. Optim.
,
30
(
3
), pp.
181
192
.
28.
Olesen
,
L. H.
,
Okkels
,
F.
, and
Bruus
,
H.
,
2006
, “
A High-Level Programming-Language Implementation of Topology Optimization Applied to Steady-State Navier–Stokes Flow
,”
Int. J. Numer. Methods Eng.
,
65
(
7
), pp.
975
1001
.
29.
Donea
,
J.
, and
Huerta
,
A.
,
2003
,
Finite Element Methods for Flow Problems
,
Wiley
, Hoboken, NJ.
30.
Deng
,
Y.
,
Liu
,
Z.
,
Zhang
,
P.
,
Liu
,
Y.
, and
Wu
,
Y.
,
2011
, “
Topology Optimization of Unsteady Incompressible Navier–Stokes Flows
,”
J. Comput. Phys.
,
230
(
17
), pp.
6688
6708
.
31.
Liu
,
Z.
,
Gao
,
Q.
,
Zhang
,
P.
,
Xuan
,
M.
, and
Wu
,
Y.
,
2011
, “
Topology Optimization of Fluid Channels With Flow Rate Equality Constraints
,”
Struct. Multidiscip. Optim.
,
44
(
1
), pp.
31
37
.
You do not currently have access to this content.