Revisiting the fluctuating vorticity field in the centerplane of a turbulent channel flow, we show that the vorticity is distinctly anisotropic at low Reynolds numbers (Re). This result is in contrast with some earlier conclusions. The anisotropy is a function of Re, and we have compiled data to show that the anisotropy gradually vanishes with increasing Re. Acknowledging the anisotropy is important for current efforts on simulating turbulent particle suspensions.

References

References
1.
Bellani
,
G.
, and
Variano
,
E. A.
,
2014
, “
Homogeneity and Isotropy in a Laboratory Turbulent Flow
,”
Exp. Fluids
,
55
, pp.
1
12
.10.1007/s00348-013-1646-8
2.
Zhao
,
L.
,
Marchioli
,
C.
, and
Andersson
,
H. I.
,
2014
, “
Slip Velocity of Rigid Fibers in Turbulent Channel Flow
,”
Phys. Fluids
,
26
(6), p.
063302
.10.1063/1.4881942
3.
Antonia
,
R. A.
,
Kim
,
J.
, and
Browne
,
L. B. W.
,
1991
, “
Some Characteristics of Small-Scale Turbulence in a Turbulent Duct Flow
,”
J. Fluid Mech.
,
233
, pp.
369
388
.10.1017/S0022112091000526
4.
Kim
,
J.
,
Moin
,
P.
, and
Moser
,
R.
,
1987
, “
Turbulence Statistics in Fully Developed Channel Flow at Low Reynolds Number
,”
J. Fluid Mech.
,
177
, pp.
133
166
.10.1017/S0022112087000892
5.
Mortensen
,
P. H.
,
Andersson
,
H. I.
,
Gillessen
,
J. J. J.
, and
Boersma
,
B. J.
,
2008
, “
Dynamics of Prolate Ellipsoidal Particles in a Turbulent Channel Flow
,”
Phys. Fluids
,
20
, p.
093302
.10.1063/1.2975209
6.
Moser
,
R. D.
,
Kim
,
J.
, and
Mansour
,
N. N.
,
1999
, “
Direct Numerical Simulation of Turbulent Channel Flow Up to Reτ = 590
,”
Phys. Fluids
,
11
(
4
), pp.
643
645
.10.1063/1.869966
7.
Efron
,
B.
, and
Tibshirani
,
R. J.
,
1994
,
An Introduction to the Bootstrap
,
Chapman & Hall/CRC
,
Boca Raton
.
8.
Barri
,
M.
, and
Andersson
,
H. I.
,
2010
, “
Computer Experiments on Rapidly Rotating Plane Couette Flow
,”
Commun. Comput. Phys.
,
7
(
4
), pp.
683
717
.10.4208/cicp.2009.09.068
9.
Tennekes
,
H.
, and
Lumley
,
J. L.
,
1972
,
A First Course in Turbulence
,
The MIT Press
,
Cambridge, MA
.
10.
Bernard
,
P. S.
,
1990
, “
Turbulent Vorticity Transport in Three Dimensions
,”
Theor. Comput. Fluid Dyn.
,
2
(
3
), pp.
165
183
.
11.
Jeong
,
J.
,
Hussain
,
F.
,
Schoppa
,
W.
, and
Kim
,
J.
,
1997
, “
Coherent Structures Near the Wall in a Turbulent Channel Flow
,”
J. Fluid Mech.
,
332
, pp.
185
214
.
12.
Iwamoto
,
K.
,
Suzuki
,
Y.
, and
Kasagi
,
N.
,
2002
, “
Reynolds Number Effect on Wall Turbulence: Toward Effective Feedback Control
,”
Int. J. Heat Fluid Flow
,
23
(
5
), pp.
678
689
.10.1016/S0142-727X(02)00164-9
13.
del Álamo
,
J. C.
, and
Jiménez
,
J.
,
2003
, “
Spectra of the Very Large Anisotropic Scales in Turbulent Channels
,”
Phys. Fluids
,
15
(6), pp.
L41
L45
.10.1063/1.1570830
14.
Kolmogorov
,
A. N.
,
1941
, “
The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers
,”
Dokl. Akad. Nauk SSSR
,
30
, pp.
301
305
.
15.
Durbin
,
P. A.
, and
Speziale
,
C. G.
,
1991
, “
Local Anisotropy in Strained Turbulence at High Reynolds Numbers
,”
ASME J. Fluids Eng.
,
113
(
4
), pp.
707
709
.10.1115/1.2926540
16.
Fukagata
,
K.
, and
Kasagi
,
N.
,
2002
, “
Highly Energy-Conservative Finite Difference Method for the Cylindrical Coordinate System
,”
J. Comput. Phys.
,
181
(
2
), pp.
478
498
.10.1006/jcph.2002.7138
17.
Antonia
,
R. A.
, and
Kim
,
J.
,
1994
, “
A Numerical Study of Local Isotropy of Turbulence
,”
Phys. Fluids
,
6
(
2
), pp.
834
841
.10.1063/1.868321
18.
Marchioli
,
C.
,
Soldati
,
A.
,
Kuerten
,
J. G. M.
,
Arcen
,
B.
,
Tanière
,
A.
,
Goldensoph
,
G.
,
Squires
,
K. D.
,
Cargnelutti
,
M. F.
, and
Portela
,
L. M.
,
2008
, “
Statistics of Particle Dispersion in Direct Numerical Simulations of Wall-Bounded Turbulence: Results of an International Collaborative Benchmark Test
,”
Int. J. Multiphase Flow
,
34
(
9
), pp.
879
893
.10.1016/j.ijmultiphaseflow.2008.01.009
You do not currently have access to this content.