A self-locomotive microrobot can be a key technology for medical applications, manufacturing, or micro total analysis systems (μTAS). Although previous studies have mostly used magnetic, electric, chemical, or optical forces to control microrobots, we utilized flow oscillations. The results showed that the locomotion of the microrobot was stepwise near a wall when the oscillations were applied both horizontally and vertically. The most efficient microrobot was capable of propelling itself about 2×10-3 times its radius during one oscillation period. These results illustrate that the proposed stepping microrobot has great potential for future applications.

References

References
1.
Purcell
,
E. M.
,
1977
, “
Life at Low Reynolds Number
,”
Am. J. Phys.
,
45
(1), pp.
3
11
.10.1119/1.10903
2.
Lauga
,
E.
,
2011
, “
Life Around the Scallop Theorem
,”
Soft Matter
,
7
, pp.
3060
3065
.10.1039/c0sm00953a
3.
Becker
,
L. E.
,
Koelher
,
S. A.
, and
Stone
,
H. A.
,
2003
, “
On Self-Propulsion of Micro-Machines at Low Reynolds Number: Purcell's Three-Link Swimmer
,”
J. Fluid Mech.
,
490
, pp.
15
35
.10.1017/S0022112003005184
4.
Tam
,
D.
, and
Hosoi
,
A. E.
,
2007
, “
Optimal Stroke Patterns for Purcell's Three-Link Swimmer
,”
Phys. Rev. Lett.
,
98
(6), p.
068105
.10.1103/PhysRevLett.98.068105
5.
Yizhar
,
O.
,
2012
, “
Asymmetry and Stability of Shape Kinematics in Microswimmers' Motion
,”
Phys. Rev. Lett.
,
108
(25), p.
258101
.10.1103/PhysRevLett.108.258101
6.
Burton
,
L. J.
,
Hatton
,
R. L.
,
Choset
,
H.
, and
Hosoi
,
A. E.
,
2010
, “
Two-Link Swimming Using Buoyant Orientation
,”
Phys. Fluids
,
22
(9), p.
091703
.10.1063/1.3481785
7.
Najafi
,
A.
, and
Golestanian
,
R.
,
2004
, “
Simple Swimmer at Low Reynolds Number: Three Linked Spheres
,”
Phys. Rev. E
,
69
(6), p.
062901
.10.1103/PhysRevE.69.062901
8.
Golestanian
,
R.
, and
Ajdari
,
A.
,
2008
, “
Analytic Results for the Three-Sphere Swimmer at Low Reynolds Number
,”
Phys. Rev. E
,
77
(3), p.
036308
.10.1103/PhysRevE.77.036308
9.
Vladimirov
,
V.
,
2013
, “
On the Self-Propulsion of an N-Sphere Micro-Robot
,”
J. Fluid Mech.
,
716
, pp.
1
11
.10.1017/jfm.2012.501
10.
Romanczuk
,
P.
,
Bär
,
M.
,
Ebeling
,
W.
,
Lindner
,
B.
, and
Schimansky-Geier
,
L.
,
2012
, “
Active Brownian Particles
,”
Eur. Phys. J. Special Topics
,
202
(1), pp.
1
162
.10.1140/epjst/e2012-01529-y
11.
Sitti
,
M.
,
2009
, “
Miniature Devices: Voyage of the Microrobots
,”
Nature
,
458
(7242), pp.
1121
1122
.10.1038/4581121a
12.
Peyer
,
K. E.
,
Zhangb
,
L.
, and
Nelson
,
B. J.
,
2013
, “
Bio-Inspired Magnetic Swimming Microrobots for Biomedical Applications
,”
Nanoscale
,
5
(4), pp.
1259
1272
.10.1039/c2nr32554c
13.
Wang
,
W.
,
Chiang
,
T. Y.
,
Velegol
,
D.
, and
Mallouk
,
T. E.
,
2013
, “
Understanding the Efficiency of Autonomous Nano- and Microscale Motors
,”
J. Am. Chem. Soc.
,
135
(28), pp.
10557
10565
.10.1021/ja405135f
14.
Dreyfus
,
R.
,
Baudry
,
J.
,
Roper
,
M. L.
,
Fermigier
,
M.
,
Stone
,
H. A.
, and
Bibette
,
J.
,
2005
, “
Microscopic Artificial Swimmers
,”
Nature
,
437
, pp.
862
865
.10.1038/nature04090
15.
Cheang
,
U. K.
,
Roy
,
D.
,
Lee
,
J. H.
, and
Kim
,
M. J.
,
2010
, “
Fabrication and Magnetic Control of Bacteria-Inspired Robotic Microswimmers
,”
Appl. Phys. Lett.
,
97
(7060), p.
213704
.10.1063/1.3518982
16.
Snezhko
,
A.
, and
Aranson
,
I. S.
,
2011
, “
Magnetic Manipulation of Self-Assembled Colloidal Asters
,”
Nat. Mater.
,
10
(9), pp.
698
703
.10.1038/nmat3083
17.
Chang
,
S. T.
,
Paunov
,
V. N.
,
Petsev
,
D. N.
, and
Velev
,
O. D.
,
2007
, “
Remotely Powered Self-Propelling Particles and Micropumps Based on Miniature Diodes
,”
Nat. Mater.
,
6
(3), pp.
235
240
.10.1038/nmat1843
18.
Loget
,
G.
, and
Kuhn
,
A.
,
2011
, “
Electric Field-Induced Chemical Locomotion of Conducting Objects
,”
Nat. Commun.
,
2
, p.
535
.10.1038/ncomms1550
19.
Jiang
,
H.-R.
,
Yoshinaga
,
N.
, and
Sano
,
M.
,
2010
, “
Active Motion of a Janus Particle by Self-Thermophoresis in a Defocused Laser Beam
,”
Phys. Rev. Lett.
,
105
(26), p.
268302
.10.1103/PhysRevLett.105.268302
20.
Thutupalli
,
S.
,
Seemann
,
R.
, and
Herminghaus
,
S.
,
2011
, “
Swarming Behavior of Simple Model Squirmers
,”
New J. Phys.
,
13
(7), p.
073021
.10.1088/1367-2630/13/7/073021
21.
Leoni
,
M.
,
Kotar
,
J.
,
Bassetti
,
V.
,
Cicuta
,
P.
, and
Cosentino Lagomarsino
,
M.
,
2009
, “
A Basic Swimmer at Low Reynolds Number
,”
Soft Matter
,
5
(2), pp.
472
476
.10.1039/b812393d
22.
Vladimirov
,
V. A.
,
2013
, “
Dumbbell Micro-Robot Driven by Flow Oscillations
,”
J. Fluid Mech.
,
717
, pp.
1
11
.10.1017/jfm.2013.30
23.
Pozrikidis
,
C.
,
1992
, “Boundary Integral and Singularity Methods for Linearized Viscous Flow,” Cambridge University, Cambridge.
24.
Blake
,
J. R.
, and
Chwang
,
A. T.
,
1974
, “
Fundamental Singularities of Viscous Flow
,”
J. Eng. Math.
,
8
(1), pp.
23
29
.10.1007/BF02353701
25.
Youngren
,
G. K.
, and
Acrivos
,
A.
,
1975
, “
Stokes Flow Past a Particle of Arbitrary Shape: A Numerical Method of Solution
,”
J. Fluid Mech.
,
69
, pp.
377
403
.10.1017/S0022112075001486
26.
Ishikawa
,
T.
,
Simmonds
,
M. P.
, and
Pedley
,
T. J.
,
2006
, “
Hydrodynamic Interaction of Two Swimming Model Micro-Organisms
,”
J. Fluid Mech.
,
568
, pp.
119
160
.10.1017/S0022112006002631
You do not currently have access to this content.