Multiphase pumps for offshore plants must perform at high pressure because they are installed on deep-sea floors to pressurize and transfer crude oil in oil wells. As the power for operating pumps should be supplied to deep sea floors using umbilicals, risers, and flow lines (URF), which involve a higher cost to operate pumps, the improvement of pump efficiency is strongly emphasized. In this study, a design optimization to improve the hydrodynamic performance of multiphase pumps for offshore plants was implemented. The design of experiment (DOE) techniques was used for organized design optimization. When DOE was performed, the performance of each test set was evaluated using the verified numerical analysis. In this way, the efficiency of the optimization was improved to save time and cost. The degree to which each design variable affects pump performance was evaluated using fractional factorial design, so that the design variables having a strong effect were selected based on the result. Finally, the optimized model indicating a higher performance level than the base model was generated by design optimization using the response surface method (RSM). How the performance was improved was also analyzed by comparing the internal flow fields of the base model with the optimized model. It was found that the nonuniform flow components observed on the base model were sharply suppressed in the optimized model. In addition, due to the increase of the pressure performance of the optimized model, the volume of air was reduced; therefore, the optimized model showed less energy loss than the base model.

References

References
1.
Wang
,
W.
, and
Majid
,
H. B. A.
,
2000
, “
Reliability Data Analysis and Modelling of Offshore Oil Platform Plant
,”
J. Qual. Maint. Eng.
,
6
(
4
), pp.
287
295
.10.1108/13552510010346824
2.
Pelegrí
,
J. L.
,
Arístegui
,
J.
,
Cana
,
L.
,
González-Dávila
,
M.
,
Hernández-Guerra
,
A.
,
Hernández-León
,
S.
, and
Santana-Casiano
,
M.
,
2005
, “
Coupling Between the Open Ocean and the Coastal Upwelling Region Off Northwest Africa: Water Recirculation and Offshore Pumping of Organic Matter
,”
J. Mar. Syst.
,
54
(
1
), pp.
3
37
.10.1016/j.jmarsys.2004.07.003
3.
Arthur
,
N.
,
2005
, “
Optimization of Vibration Analysis Inspection Intervals for an Offshore Oil and Gas Water Injection Pumping System
,”
Proc. Inst. Mech. Eng., Part E
,
219
(
3
), pp.
251
259
.10.1243/095440805X8638
4.
Cao
,
S.
,
Peng
,
G.
, and
Yu
,
Z.
,
2005
, “
Hydrodynamic Design of Rotodynamic Pump Impeller for Multiphase Pumping by Combined Approach of Inverse Design and CFD Analysis
,”
ASME J. Fluids Eng.
,
127
(
2
), pp.
330
338
.10.1115/1.1881697
5.
Yang
,
X.
,
Qu
,
Z.
, and
Wu
,
Y.
,
2011
, “
Frictional Loss Studies and Experimental Performance of a New Synchronal Rotary Multiphase Pump
,”
ASME J. Fluids Eng.
,
133
(
4
), p.
041303
.10.1115/1.4003986
6.
Shippen
,
M. E.
, and
Scott
,
S. L.
,
2002
, “
Multiphase Pumping as an Alternative to Conventional Separation, Pumping, and Compression
,”
2002 PSIG Conference
,
Portland, Oregon
, Paper No. PSIG 0210.
7.
Dorenbos
,
C. K.
,
Müeller-Link
,
D.
, and
Jäeschke
,
A.
,
2001
, “
Sand Handling During Multiphase Operations With Twin-Screw Pumps
,”
SPE International Thermal Operations and Heavy Oil Symposium
,
Margarita Island, Venezuela
, Paper No. SPE-69846-MS.
8.
Zhang
,
J.
,
Zhu
,
H.
, and
Wei
,
H.
,
2011
, “
Three-Dimensional Blade Design of Helico-Axial Multiphase Pump Impeller Based on Numerical Solution of Meridian Flow Net and Blade Mean Camber Lines
,”
ASME-JSME-KSME 2011 Joint Fluids Engineering Conference
,
Hamamatsu, Japan
,
ASME
Paper No. AJK2011-06030.10.1115/AJK2011-06030
9.
McKee
,
M.
,
Forster
,
L.
,
Voight
,
R.
,
Ionescu
,
S.
,
Allen
,
J.
,
Paes
,
T. M.
,
Baker
,
R.
,
Albaugh
,
E. K.
,
Batho
,
P.
, and
Davis
,
D.
,
2013
,
2013 Worldwide Survey of Subsea Processing: Separation, Compression, and Pumping Systems
,
Offshore Magazine
,
Houston, TX
.
10.
Kim
,
J. H.
,
Yoon
,
J. Y.
, and
Choi
,
Y. S.
,
2013
, “
Development of Multiphase Pump for Offshore Plant
,”
Conference on KSME
,
Jeju, Korea
, pp.
75
76
.
11.
Brennen
,
C. E.
,
2011
,
Hydrodynamics of Pumps
,
Cambridge University
,
New York
.
12.
Bassi
,
F.
, and
Rebay
,
S.
,
1997
, “
A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier–Stokes Equations
,”
J. Comput. Phys.
,
131
(
2
), pp.
267
279
.10.1006/jcph.1996.5572
13.
Eymard
,
R.
,
Gallouët
,
T.
, and
Herbin
,
R.
,
2000
, “
Finite Volume Methods
,”
Handbook of Numerical Analysis
,
Ph.
Ciarlet
and
J. L.
Lions
, eds.,
Marcel Dekker Inc.
,
New York
, pp.
713
1018
.
14.
Menter
,
F. R.
,
Galpin
,
P. F.
,
Esch
,
T.
,
Kuntz
,
M.
, and
Berner
,
C.
,
2004
, “
CFD Simulations of Aerodynamic Flows With a Pressure-Based Method
,”
Proceedings of the 24th International Congress of the Aeronautical Sciences
,
Yokohama, Japan
.
15.
Vaz
,
G.
,
Waals
,
O. J.
,
Ottens
,
H.
,
Fathi
,
F.
,
Le Souëf
,
T.
, and
Kiu
,
K.
,
2009
, “
Current Affairs: Model Tests, Semi-Empirical Predictions and CFD Computations for Current Coefficients of Semi-Submersibles
,”
ASME
Paper No. OMAE2009-80216, pp. 877–887.10.1115/OMAE2009-80216
16.
Wang
,
G. Y.
,
Huo
,
Y.
,
Zhang
,
B.
,
Li
,
X. B.
, and
Yu
,
Z. Y.
,
2009
, “
Evaluation of Turbulence Models for Predicting the Performance of an Axial-Flow Pump
,”
Trans. Beijing Inst. Technol.
,
29
(4), pp.
309
313
.
17.
Mishra
,
K. B.
, and
Wehrstedt
,
K. D.
,
2014
, “
Spill-Over Characteristics of Peroxy-Fuels: Two-Phase CFD Investigations
,”
J. Loss Prev. Process Ind.
,
29
, pp.
186
197
.10.1016/j.jlp.2014.02.014
18.
Sato
,
Y.
, and
Sekoguchi
,
K.
,
1975
, “
Liquid Velocity Distribution in Two-Phase Bubbly Flow
,”
Int. J. Multiphase Flow
,
2
(
1
), pp.
79
95
.10.1016/0301-9322(75)90030-0
19.
Kim
,
J. H.
,
Yoon
,
J. Y.
, and
Choi
,
Y. S.
, “
Reliability Verification of Numerical Analysis for Multiphase Flow in a Venturi
,”
J. Acta Mech. Sin.
(submitted).
20.
Berlemont
,
A.
,
Desjonqueres
,
P.
, and
Gouesbet
,
G.
,
1990
, “
Particle Lagrangian Simulation in Turbulent Flows
,”
Int. J. Multiphase Flow
,
16
(
1
), pp.
19
34
.10.1016/0301-9322(90)90034-G
21.
Clift
,
R.
,
Grace
,
J. R.
, and
Weber
,
M. E.
,
1978
,
Bubbles, Drops, and Particles
,
Academic
,
San Diego, CA
.
22.
Strasser
,
W.
,
2007
, “
CFD Investigation of Gear Pump Mixing Using Deforming/Agglomerating Mesh
,”
ASME J. Fluids Eng.
,
129
(
4
), pp.
476
484
.10.1115/1.2436577
23.
Subramanian
,
S.
,
Prasad
,
B. V. S. S. S.
,
Krishnan
,
S.
, and
Janakamma
,
C.
,
2004
, “
Performance Analysis of a Low-Pressure Three-Stage Axial Compressor
,”
ASME/JSME Proceedings of the Pressure Vessels and Piping Conference
,
San Diego, CA
, pp.
29
38
.
24.
Standard
,
A. P. I.
,
2010
,
Centrifugal Pumps for Petroleum, Petrochemical and Natural Gas Industries
,
11th ed.
,
America Petroleum Institute
, Washington, DC.
25.
Condra
,
L.
,
2001
,
Reliability Improvement With Design of Experiment
,
CRC Press
, London.
26.
Montgomery
,
D. C.
,
2008
,
Design and Analysis of Experiments
,
Wiley
,
New York
.
27.
Deaconu
,
S.
, and
Coleman
,
H. W.
,
2000
, “
Limitations of Statistical Design of Experiments Approaches in Engineering Testing
,”
ASME J. Fluids Eng.
,
122
(
2
), pp.
254
259
.10.1115/1.483252
28.
Mantell
,
S. C.
,
Chanda
,
H.
,
Bechtold
,
J. E.
, and
Kyle
,
R. F.
,
1998
, “
A Parametric Study of Acetabular Cup Design Variables Using Finite Element Analysis and Statistical Design of Experiments
,”
ASME J. Biomech. Eng.
,
120
(
5
), pp.
667
675
.10.1115/1.2834760
29.
Cheng
,
L.
,
Alexandrina
,
U.
,
Wood
,
Houston G.
,
Qingdong
,
Y.
, and
Wei
,
W.
,
2014
, “
Parametric Analysis and Optimization of Inlet Deflection Angle in Torque Converters
,”
ASME J. Fluids Eng.
,
137
(
3
), p.
031101
.10.1115/1.4028596
30.
Asadi
,
M.
,
Bayley
,
C.
, and
Goldak
,
J.
,
2013
, “
Optimizing Temper Bead Welding by Computational Weld Mechanics and Design of Experiment Matrix
,”
ASME J. Pressure Vessel Technol.
,
135
(
3
), p.
031401
.10.1115/1.4023725
31.
Cao
,
S.
,
Peng
,
G.
, and
Yu
,
Z.
,
2005
, “
Hydrodynamic Design of Rotodynamic Pump Impeller for Multiphase Pumping by Combined Approach of Inverse Design and CFD Analysis
,”
ASME J. Fluids Eng.
,
127
(
2
), pp.
330
338
.10.1115/1.1881697
32.
Kim
,
J. H.
, and
Kim
,
K. Y.
,
2012
, “
Analysis and Optimization of a Vaned Diffuser in a Mixed Flow Pump to Improve Hydrodynamic Performance
,”
ASME J. Fluids Eng.
,
134
(
7
), p.
071104
.10.1115/1.4006820
33.
Kim
,
J. H.
,
Kim
,
J. W.
, and
Kim
,
K. Y.
,
2011
, “
Axial-Flow Ventilation Fan Design Through Multi-Objective Optimization to Enhance Aerodynamic Performance
,”
ASME J. Fluids Eng.
,
133
(
10
), p.
101101
.10.1115/1.4004906
34.
Yang
,
W.
, and
Xiao
,
R.
,
2014
, “
Multiobjective Optimization Design of a Pump-Turbine Impeller Based on an Inverse Design Using a Combination Optimization Strategy
,”
ASME J. Fluids Eng.
,
136
(
1
), p.
014501
.10.1115/1.4025454
35.
Li
,
W. G.
,
2008
, “
NPSHr Optimization of Axial-Flow Pumps
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
074504
.10.1115/1.2948368
36.
Box
,
G. E.
,
Hunter
,
W. G.
, and
Hunter
,
J. S.
,
1978
,
Statistics for Experimenters
,
Wiley
,
New York
.
37.
Khuri
,
A. I.
, and
Mukhopadhyay
,
S.
,
2010
, “
Response Surface Methodology
,”
Wiley Interdiscip. Rev.: Comput. Stat.
,
2
(
2
), pp.
128
149
.10.1002/wics.73
38.
Inc
,
M.
,
2003
, “
MINITAB Statistical Software
,” Release 14 for Windows, Minitab Inc., State College, PA.
You do not currently have access to this content.