Large eddy simulation (LES) approach was used to investigate jumps of primary frequency of shear layer flow over a cavity. Comparisons between computational results and experimental data show that LES is an appropriate approach to accurately capturing the critical values of velocity and cavity length of a frequency jump, as well as characteristics of the separated shear layer. The drive force of the self-sustained oscillation of impinging shear layer is fluid injection and reinjection. Flow patterns in the shear layer and cavity before and after the frequency jump demonstrate that the frequency jump is associated with vortex–corner interaction. Before frequency jump, a mature vortex structure is observed in shear layer. The vortex is clipped by impinging corner at approximately half of its size, which induces strong vortex–corner interaction. After frequency jump, successive vortices almost escape from impinging corner without the generation of a mature vortex, thereby indicating weaker vortex–corner interaction. Two wave peaks are observed in the shear layer after the frequency jump because of: (1) vortex–corner interaction and (2) centrifugal instability in cavity. Pressure fluctuations inside the cavity are well regulated with respect to time. Peak values of correlation coefficients close to zero time lags indicate the existence of standing waves inside the cavity. Transitions from a linear to a nonlinear process occurs at the same position (i.e., x/H = 0.7) for both velocity and cavity length variations. Slopes of linear region are solely the function of cavity length, thereby showing increased steepness with increased cavity length.

References

References
1.
Rossiter
,
J. E.
,
1964
, “
Wind-Tunnel Experiments on the Flow Over Rectangular Cavities at Subsonic and Transonic Speeds
,” Royal Aircraft Establishment, Farnborough, Hants, Technical Report No. 64037.
2.
Bruggeman
,
J. C.
,
Wijnands
,
A. P. J.
, and
Gorter
,
J.
,
1986
, “
Self-Sustained Low Frequency Resonance in Low-Mach-Number Gas Flow Through Pipe-Lines With Side-Branch Cavities: A Semi-Empirical Model
,”
AIAA
Paper No. 1986–1924.10.2514/6.1986–1924
3.
Kuo
,
C. H.
,
Huang
,
S. H.
, and
Chang
,
C. W.
,
2000
, “
Self-Sustained Oscillation Induced by Horizontal Cover Plate Above Cavity
,”
J. Fluids Struct.
,
14
(
1
), pp.
25
48
.10.1006/jfls.1999.0233
4.
Meile
,
T.
,
Boillat
,
J. L.
, and
Schleiss
,
A. J.
,
2011
, “
Water-Surface Oscillations in Channels With Axi-Symmetric Cavities
,”
J. Hydraul. Res.
,
49
(
1
), pp.
73
81
.10.1080/00221686.2010.534671
5.
Ota
,
D. K.
,
Chakravarthy
,
S. R.
,
Becker
,
T.
, and
Sturzenegger
,
T.
,
1994
, “
Computational Study of Resonance Suppression of Open Sunroofs
,”
ASME J. Fluids Eng.
,
116
(
4
), pp.
877
882
.10.1115/1.2911864
6.
Atvars
,
K.
,
Knowles
,
K.
,
Ritchie
,
S. A.
, and
Lawson
,
N. G.
,
2009
, “
Experimental and Computational Investigation of an Open Transonic Cavity Flow
,”
Proc. Inst. Mech. Eng. Part G
,
223
(
4
), pp.
357
368
.10.1243/09544100JAERO445
7.
Rockwell
,
D.
, and
Naudascher
,
E.
,
1978
, “
Review—Self-Sustaining Oscillations of Flow Past Cavities
,”
ASME J. Fluids Eng.
,
100
(
2
), pp.
152
165
.10.1115/1.3448624
8.
Rockwell
,
D.
, and
Naudascher
,
E.
,
1979
, “
Self-Sustained Oscillations of Impinging Free Shear Layers
,”
Annu. Rev. Fluid Mech.
,
11
, pp.
67
94
.10.1146/annurev.fl.11.010179.000435
9.
Ukeiley
,
L.
, and
Murray
,
N.
,
2005
, “
Velocity and Surface Pressure Measurements in an Open Cavity
,”
Exp. Fluids
,
38
(5), pp.
656
671
.10.1007/s00348-005-0948-x
10.
Basley
,
J.
,
Pastur
,
L. R.
,
Lusseyran
,
F.
, and
Delprat
,
N.
,
2011
, “
Experimental Investigation of Global Structures in an Incompressible Cavity Flow Using Time-Resolved PIV
,”
Exp. Fluids
,
50
(4), pp.
905
918
.10.1007/s00348-010-0942-9
11.
Faure
,
T. M.
,
Adrianos
,
P.
,
Lusseyran
,
F.
, and
Pastur
,
L.
,
2007
, “
Visualizations of the Flow Inside an Open Cavity at Medium Range Reynolds Numbers
,”
Exp. Fluids
,
42
(2), pp.
169
184
.10.1007/s00348-006-0188-8
12.
Basley
,
J.
,
Pastur
,
L. R.
,
Lusseyran
,
F.
,
Soria
,
J.
, and
Delprat
,
N.
,
2014
, “
On the Modulating Effect of Three-Dimensional Instabilities in Open Cavity Flows
,”
J. Fluid Mech.
,
759
, pp.
546
578
.10.1017/jfm.2014.576
13.
Pey
,
Y. Y.
,
Chua
,
L. P.
, and
Siauw
,
W. L.
,
2014
, “
Effect of Trailing Edge Ramp on Cavity Flow Structures and Pressure Drag
,”
Int. J. Heat Fluid Flow
,
45
, pp.
53
71
.10.1016/j.ijheatfluidflow.2013.11.008
14.
Rockwell
,
D.
, and
Knisely
,
C.
,
1980
, “
Vortex Edge Interaction: Mechanisms for Generating Low Frequency Components
,”
Phys. Fluids
,
23
(
2
), pp.
239
240
.10.1063/1.862962
15.
Chatellier
,
L.
,
Laumonier
,
J.
, and
Gervais
,
Y.
,
2004
, “
Theoretical and Experimental Investigations of Low Mach Number Turbulent Cavity Flows
,”
Exp. Fluids
,
36
(
5
), pp.
728
740
.10.1007/s00348-003-0752-4
16.
Martinez
,
M. A.
,
Di Cicca
,
G. M.
,
Iovieno
,
M.
, and
Onorato
,
M.
,
2012
, “
Control of Cavity Flow Oscillations by High Frequency Forcing
,”
ASME J. Fluids Eng.
,
134
(
5
), p.
051201
.10.1115/1.4006468
17.
Rojas-Herrera
,
J.
,
Velazquez
,
A.
,
Arias
,
J. R.
, and
Barrero
,
A.
,
2015
, “
Experimental Study on the Attenuation of Pressure Waves in a Cavity Induced by Flow Boiling
,”
Exp. Therm. Fluid Sci.
,
61
, pp.
96
104
.10.1016/j.expthermflusci.2014.10.023
18.
Roberts
,
D. A.
, and
MacManus
,
D. G.
,
2012
, “
Passive Control of Transonic Cavity Aeroacoustics
,”
ASME J. Fluids Eng.
,
134
(
11
), p.
111103
.10.1115/1.4007593
19.
Ghaddar
,
N. K.
,
Korczak
,
K. Z.
,
Mikic
,
B. B.
, and
Patera
,
A. T.
,
1986
, “
Numerical Investigation of Incompressible Flow in Grooved Channels Part I—Stability and Self-Sustained Oscillations
,”
J. Fluid Mech.
,
163
, pp.
413
432
.10.1017/S0022112086002227
20.
Bres
,
G. A.
, and
Colonius
,
T.
,
2008
, “
Three-Dimensional Instabilities in Compressible Flow Over Open Cavities
,”
J. Fluid Mech.
,
599
, pp.
309
339
.10.1017/S0022112007009925
21.
Larchevêque
,
L.
,
Sagaut
,
P.
,
Mary
,
I.
,
Labbe
,
O.
, and
Comte
,
P.
,
2003
, “
Large-Eddy Simulation of a Compressible Flow Past a Deep Cavity
,”
Phys. Fluids
,
15
(
1
), pp.
193
208
.10.1063/1.1522379
22.
Larcheveque
,
L.
,
Sagaut
,
P.
,
Le
,
T. H.
, and
Comte
,
P.
,
2004
, “
Large-Eddy Simulation of a Compressible Flow in a Three-Dimensional Open Cavity at High Reynolds Number
,”
J. Fluid Mech.
,
516
, pp.
265
301
.10.1017/S0022112004000709
23.
Larcheveque
,
L.
,
Sagaut
,
P.
, and
Labbe
,
O.
,
2007
, “
Large-Eddy Simulation of a Subsonic Cavity Flow Including Asymmetric Three-Dimensional Effects
,”
J. Fluid Mech.
,
577
, pp.
105
126
.10.1017/S0022112006004502
24.
Stanek
,
M. J.
,
Visbal
,
M. R.
,
Rizzetta
,
D. P.
,
Rubin
,
S. G.
, and
Khosla
,
P. K.
,
2007
, “
On a Mechanism of Stabilizing Turbulent Free Shear Layers in Cavity Flows
,”
Comput. Fluids
,
36
, pp.
1621
1637
.10.1016/j.compfluid.2007.03.011
25.
Yao
,
H.
,
Cooper
,
R. K.
, and
Raghunathan
,
S.
,
2004
, “
Numerical Simulation of Incompressible Laminar Flow Over Three-Dimensional Rectangular Cavities
,”
ASME J. Fluids Eng.
,
126
(
6
), pp.
919
927
.10.1115/1.1845531
26.
Chua
,
L. C.
, and
Shuy
,
E. B.
,
2006
, “
Coupling of U-Tube and Shear Layer Oscillations in an Interconnected Flow Compartment
,”
J. Eng. Mech.
,
132
(
7
), pp.
764
770
.10.1061/(ASCE)0733-9399(2006)132:7(764)
27.
Rockwell
,
D.
, and
Knisely
,
C.
,
1979
, “
The Organized Nature of Flow Impingement Upon a Corner
,”
J. Fluid Mech.
,
93
(
3
), pp.
413
432
.10.1017/S0022112079002573
28.
Knisely
,
C.
, and
Rockwell
,
D.
,
1982
, “
Self-Sustained Low-Frequency Components in an Impinging Shear Layer
,”
J. Fluid Mech.
,
116
, pp.
157
186
.10.1017/S002211208200041X
29.
Yang
,
Z. Y.
, and
Voke
,
P. R.
,
2001
, “
Large-Eddy Simulation of Boundary-Layer Separation and Transition at a Change of Surface Curvature
,”
J. Fluid Mech.
,
439
, pp.
305
333
.10.1017/S0022112001004633
30.
ansys fluent 12.0, 2009, “
Theory Guide
.”
You do not currently have access to this content.