In this study, the form of the analytes distribution in isotachophoresis (ITP) in the presence of a convective flow is analyzed in a wide rectangular microchannel. The imposed convection is considered due to a mismatch of electroosmotic (EO) slip velocity of electrolytes of different electrophoretic mobilities. We compute the two-dimensional (2D) Nernst–Planck equations coupled with the Navier–Stokes equations for fluid flow and an equation for electric field. We use a control volume method along with a higher-order upwind scheme to capture the sharp variation of variables in the transition zones. The convection of electrolytes produces a smearing effect on the steepness of the electric field and ion distribution in the interface between two adjacent electrolytes in the ITP process. The dispersion of the interface in plateau-mode and the sample in peak-mode is analyzed through the second- and third-order moments. The dispersion due to nonuniform EO flow (EOF) of electrolytes is found to be different from the case when the dispersion is considered only due to an external pressure driven Poiseuille flow. The nonuniform EOF of electrolytes produces less dispersion and skewness in the sample distribution when the molecular diffusivity of the sample ionic species is close to the harmonic mean of the diffusivity of adjacent electrolytes. We find that the EOF may become advantageous in separating two analytes of close diffusivity. Our results show that the one-dimensional (1D) Taylor–Aris model is suitable to predict the dispersed ITP when the average convection speed of electrolytes is in the order of the ITP speed.

References

References
1.
Chen
,
L.
,
Prest
,
J. E.
,
Fielden
,
P. R.
,
Goddard
,
N. J.
,
Manz
,
A.
, and
Day
,
P. J. R.
,
2006
, “
Miniaturised Isotachophoresis Analysis
,”
Lab. Chip
,
6
(
17
), pp.
474
487
.10.1039/b515551g
2.
Malá
,
Z.
,
Gebauer
,
P.
, and
Boček
,
P.
,
2013
, “
Recent Progress in Analytical Capillary Isotachophoresis
,”
Electrophoresis
,
34
(
1
), pp.
19
28
.10.1002/elps.201200323
3.
Kohlrausch
,
F.
,
1897
, “
Über Concentrations-Verschiebungen Durch Electrolyse im Inneren von Lösungen und Lösungsgemis
,”
Ann. Phys. Chem.
,
62
, pp.
209
239
.10.1002/andp.18972981002
4.
Rubin
,
S.
,
Schwartz
,
O.
, and
Bercovici
,
M.
,
2014
, “
Sample Distribution in Peak Mode Isotachophoresis
,”
Phys. Fluids
,
26
(
1
), p.
012001
.10.1063/1.4861399
5.
Hruska
,
V.
,
Jaros
,
M.
, and
Gas
,
B.
,
2006
, “
Simul 5—Free Dynamic Simulator of Electrophoresis
,”
Electrophoresis
,
27
(
5
), pp.
984
991
.10.1002/elps.200500756
6.
Thormann
,
W.
,
Breadmore
,
M. C.
,
Caslavska
,
J.
, and
Mosher
,
R. A.
,
2010
, “
Dynamic Computer Simulations of Electrophoresis: A Versatile Research and Teaching Tool
,”
Electrophoresis
,
31
(
5
), pp.
726
754
.10.1002/elps.200900613
7.
Yu
,
J. W.
,
Chou
,
Y.
, and
Yang
,
R. J.
,
2008
, “
High-Resolution Modeling of Isotachophoresis and Zone Electrophoresis
,”
Electrophoresis
,
29
(
5
), pp.
1048
1057
.10.1002/elps.200700427
8.
Chou
,
Y.
, and
Yang
,
R. J.
,
2010
, “
Numerical Solutions for Isoelectric Focusing and Isotachophoresis Problems
,”
J. Chromatogr. A
,
1217
(
3
), pp.
394
404
.10.1016/j.chroma.2009.11.044
9.
Bercovici
,
M.
,
Lelea
,
S. K.
, and
Santiago
,
J. G.
,
2009
, “
Open Source Simulation Tool for Electrophoretic Stacking, Focusing, and Separation
,”
J. Chromatogr. A
,
1216
(
6
), pp.
1008
1018
.10.1016/j.chroma.2008.12.022
10.
Bercovici
,
M.
,
Lelea
,
S. K.
, and
Santiago
,
J. G.
,
2010
, “
Compact Adaptive-Grid Scheme for High Numerical Resolution Simulations of Isotachophoresis
,”
J. Chromatogr. A
,
1217
(
4
), pp.
588
599
.10.1016/j.chroma.2009.11.072
11.
Thormann
,
W.
,
Zhang
,
C. X.
,
Caslavska
,
J.
,
Gebauer
,
P.
, and
Mosher
,
R. A.
,
1998
, “
Modeling of the Impact of Ionic Strength on the Electroosmotic Flow in Capillary Electrophoresis With Uniform and Discontinuous Buffer Systems
,”
Anal. Chem.
,
70
(
3
), pp.
549
562
.10.1021/ac970513x
12.
Baier
,
T.
,
Schönfeld
,
F.
, and
Hardt
,
S.
,
2011
, “
Analytical Approximations to the Flow Field Induced by Electroosmosis During Isotachophoretic Transport Through a Channel
,”
J. Fluid Mech.
,
682
, pp.
101
119
.10.1017/jfm.2011.250
13.
Shim
,
J.
,
Cho
,
M.
, and
Dutta
,
P.
,
2011
, “
A Method to Determine Quasi-Steady State in Constant Voltage Mode Isotachophoresis
,”
Electrophoresis
,
32
(
9
), pp.
988
995
.10.1002/elps.201000594
14.
Liu
,
B.
, and
Ivory
,
C. F.
,
2013
, “
Isotachophoresis With Counterflow in an Open Capillary: Computer Simulation and Experimental Validation
,”
J. Sep. Sci.
,
36
(
12
), pp.
1986
1995
.10.1002/jssc.201300066
15.
Shim
,
J.
,
Dutta
,
P.
, and
Ivory
,
C. F.
,
2007
, “
Finite-Volume Methods for Isotachophoretic Separation in Microchannels
,”
Numer. Heat Transfer, Part A: Appl.
,
52
(
5
), pp.
441
461
.10.1080/10407780701298585
16.
Cui
,
H.
,
Dutta
,
P.
, and
Ivory
,
C. F.
,
2007
, “
Isotachophoresis of Proteins in a Networked Microfluidic Chip: Experiment and 2-D Simulation
,”
Electrophoresis
,
28
(
7
), pp.
1138
1145
.10.1002/elps.200600525
17.
Choi
,
H.
,
Jeon
,
Y.
,
Cho
,
M.
,
Lee
,
D.
, and
Shim
,
J.
,
2010
, “
Effects of Cross-Sectional Change on the Isotachophoresis Process for Protein-Separation Chip Design
,”
Microsyst. Technol.
,
16
(
11
), pp.
1931
1938
.10.1007/s00542-010-1105-x
18.
Saville
,
D. A.
,
1990
, “
The Effects of Electroosmosis on the Structure of Isotachophoresis Boundaries
,”
Electrophoresis
,
11
(
11
), pp.
899
902
.10.1002/elps.1150111103
19.
Schönfeld
,
F.
,
Goet
,
G.
,
Baier
,
T.
, and
Hardt
,
S.
,
2009
, “
Transition Zone Dynamics in Combined Isotachophoretic and Electro-Osmotic Transport
,”
Phys. Fluids
,
21
(
9
), p.
092002
.10.1063/1.3222866
20.
Garcia-Schwarz
,
G.
,
Bercovici
,
M.
,
Marshall
,
L. A.
, and
Santiago
,
J. G.
,
2011
, “
Sample Dispersion in Isotachophoresis
,”
J. Fluid Mech.
,
679
, pp.
455
475
.10.1017/jfm.2011.139
21.
Bhattacharyya
,
S.
,
Gopmandal
,
P. P.
,
Baier
,
T.
, and
Hardt
,
S.
,
2013
, “
Sample Dispersion in Isotachophoresis With Poiseuille Counterflow
,”
Phys. Fluids
,
25
(
2
), p.
022001
.10.1063/1.4789967
22.
Sounart
,
T. L.
, and
Baygents
,
J. C.
,
2007
, “
Lubrication Theory for Electro-Osmotic Flow in a Non-Uniform Electrolyte
,”
J. Fluid Mech.
,
576
, pp.
139
172
.10.1017/S0022112006003867
23.
Hissner
,
F.
,
Mattusch
,
J.
, and
Heinig
,
K.
,
1999
, “
Quantitative Determination of Sulfur-Containing Anions in Complex Matrices With Capillary Electrophoresis and Conductivity Detection
,”
J. Chromatogr. A
,
848
(
1
), pp.
503
513
.10.1016/S0021-9673(99)00458-6
24.
Quirino
,
J. P.
, and
Aranas
,
A. T.
,
2012
, “
On-Line Sample Concentration Via Micelle to Solvent Stacking of Cations Prepared With Aqueous Organic Solvents in Capillary Electrophoresis
,”
Electrophoresis
,
33
(
14
), pp.
2167
2175
.10.1002/elps.201200023
25.
Nandigana
,
N. V. R.
, and
Aluru
,
N. R.
,
2013
, “
Nonlinear Electrokinetic Transport Under Combined AC and DC Fields in Micro/Nanofluidic Interface Devices
,”
ASME J. Fluids Eng.
,
135
(
2
), p.
021201
.10.1115/1.4023442
26.
Fletcher
,
C. A. J.
,
1998
,
Computation Technique for Fluid Dynamics
, Vol.
2
,
Springer
,
Berlin, Germany
.
27.
Bhattacharyya
,
S.
, and
Gopmandal
,
P. P.
,
2012
, “
Numerical Study on Separation of Analytes Through Isotachophoresis
,”
Commun. Comput. Inf. Sci.
,
305
, pp.
282
292
.10.1007/978-3-642-32112-2
28.
Goet
,
G.
,
Baier
,
T.
, and
Hardt
,
S.
,
2011
, “
Transport and Separation of Micron Sized Particles at Isotachophoretic Transition Zones
,”
Biomicrofluidics
,
5
(
1
), p.
014109
.10.1063/1.3555194
29.
MacInnes
,
D. A.
, and
Longsworth
,
L. G.
,
1932
, “
Transference Numbers by the Method of Moving Boundaries
,”
Chem. Rev.
,
11
(
2
), pp.
171
230
.10.1021/cr60039a001
30.
Bharadwaj
,
R.
,
Huber
,
D. E.
,
Khurana
,
T.
, and
Santiago
,
J. G.
,
2008
, “
Taylor Dispersion in Sample Preconcentration Methods
,”
Handbook of Capillary and Microchip Electrophoresis and Associated Microtechniques
, 3rd ed.,
J. P.
Landers
,
ed.,
CRC CRC Press, Taylor & Francis Group, Boca Raton
,
London, New York
, pp.
1085
1120
.
You do not currently have access to this content.