Measurements have been carried out for determining the viscosity of several nanofluids, in which different nanoparticles were dispersed in a base fluid of 60% propylene glycol (PG) and 40% water by mass. The nanoparticles were aluminum oxide (Al2O3), copper oxide (CuO), silicon dioxide (SiO2), titanium oxide (TiO2), and zinc oxide (ZnO) with different average particle diameters. Measurements were conducted for particle volume concentrations of up to 6% and over a temperature range of 243 K–363 K. All the nanofluids exhibited a Bingham plastic behavior at lower temperatures of 243 K–273 K and a Newtonian behavior in the temperature range of 273 K–363 K. Comparisons of the experimental data with several existing models show that they do not exhibit good agreement. Therefore, a new model has been developed for the viscosity of nanofluids as a function of temperature, particle volume concentration, particle diameter, the properties of nanoparticles, and those of the base fluid. Measurements were also conducted for single walled, bamboolike structured, and hollow structured multiwalled carbon nanotubes (MWCNT) dispersed in a base fluid of 20% PG and 80% water by mass. Measurements of these carbon nanotubes (CNT) nanofluids were conducted for a particle volume concentration of 0.229% and over a temperature range of 273 K–363 K, which exhibited a non-Newtonian behavior. The effect of ultrasonication time on the viscosity of CNT nanofluids was investigated. From the experimental data of CNT nanofluids, a new correlation was developed which relates the viscosity to temperature and the Péclet number.

References

References
1.
Maxwell
,
J. C.
,
1904
,
A Treatise on Electricity and Magnetism
,
Dover Publications
,
New York
.
2.
Choi
,
S. U. S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Developments and Applications of Non-Newtonian Flows
, Vol.
231
,
D. A.
Siginer
, and
H. P.
Wang
, eds.,
American Society of Mechanical Engineers
,
New York
, pp.
99
105
.
3.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
,
2003
, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
ASME J. Heat Transfer
,
125
(
4
), pp.
567
574
.10.1115/1.1571080
4.
Koo
,
J.
, and
Kleinstreuer
,
C.
,
2005
, “
A New Thermal Conductivity Model for Nanofluids
,”
J. Nanopart. Res.
,
6
(
6
), pp.
577
588
.10.1007/s11051-004-3170-5
5.
Vajjha
,
R. S.
,
Das
,
D. K.
, and
Kulkarni
,
D. P.
,
2010
, “
Development of New Correlations for Convective Heat Transfer and Friction Factor in Turbulent Regime for Nanofluids
,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
4607
4618
.10.1016/j.ijheatmasstransfer.2010.06.032
6.
Prasher
,
R.
,
Bhattacharya
,
P.
, and
Phelan
,
P. E.
,
2006
, “
Brownian-Motion-Based Convective-Conductive Model for the Effective Thermal Conductivity of Nanofluids
,”
ASME J. Heat Transfer
,
128
(
6
), p.
588
.10.1115/1.2188509
7.
Einstein
,
A.
,
1906
, “
A New Determination of the Molecular Dimensions
,”
Ann. Phys.
,
19
(
2
), pp.
289
306
.
8.
de Bruijn
,
H.
,
1942
, “
The Viscosity of Suspensions of Spherical Particles. (The Fundamental ɳ-c and ϕ-c Relations)
,”
Recl. Trav. Chim. Pays-Bas
,
61
(
12
), pp.
863
874
.
9.
Vand
,
V.
,
1948
, “
Viscosity of Solutions and Suspensions. I. Theory
,”
J. Chem. Phys.
,
52
(
2
), pp.
277
299
.10.1021/j150458a001
10.
Mooney
,
M.
,
1951
, “
The Viscosity of a Concentrated Suspension of Spherical Particles
,”
J. Colloid Sci.
,
6
(
2
), pp.
162
170
.10.1016/0095-8522(51)90036-0
11.
Brinkman
,
H. C.
,
1952
, “
The Viscosity of Concentrated Suspensions and Solutions
,”
J. Chem. Phys.
,
20
(4), pp.
571
581
.10.1063/1.1700493
12.
Krieger
,
I. M.
, and
Dougherty
,
T. J.
,
1959
, “
A Mechanism for Non-Newtonian Flow in Suspensions of Rigid Spheres
,”
J. Rheol.
,
3
(
1
), pp.
137
152
.10.1122/1.548848
13.
Frankel
,
N. A.
, and
Acrivos
,
A.
,
1967
, “
On the Viscosity of a Concentrated Suspension of Solid Spheres
,”
Chem. Eng. Sci.
,
22
(
6
), pp.
847
853
.10.1016/0009-2509(67)80149-0
14.
Batchelor
,
G. K.
,
1977
, “
The Effect of Brownian Motion on the Bulk Stress in a Suspension of Spherical Particles
,”
J. Fluid Mech.
,
83
(
1
), pp.
97
117
.10.1017/S0022112077001062
15.
Graham
,
A.
,
1981
, “
On the Viscosity of Suspensions of Solid Spheres
,”
Appl. Sci. Res.
,
37
(
3–4
), pp.
275
286
.10.1007/BF00951252
16.
Leighton
,
D.
, and
Acrivos
,
A.
,
1987
, “
The Shear-Induced Migration of Particles in Concentrated Suspensions
,”
J. Fluid Mech.
,
181
, pp.
415
439
.10.1017/S0022112087002155
17.
Thomas
,
C. U.
, and
Muthukumar
,
M.
,
1991
, “
Three-Body Hydrodynamic Effects on Viscosity of Suspensions of Spheres
,”
J. Chem. Phys.
,
94
(
7
), pp.
5180
5189
.10.1063/1.460555
18.
Masuda
,
H.
,
Ebata
,
A.
,
Teramae
,
K.
, and
Hishinuma
,
N.
,
1993
, “
Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles (Dispersion of Al2O3, SiO2, and TiO2 Ultra-Fine Particles)
,”
Netsu Bussei
,
7
(
4
), pp.
227
233
.10.2963/jjtp.7.227
19.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer
,
11
(
2
), pp.
151
170
.10.1080/08916159808946559
20.
Tseng
,
W. J.
, and
Lin
,
K. C.
,
2003
, “
Rheology and Colloidal Structure of Aqueous TiO2 Nanoparticle Suspensions
,”
Mater. Sci. Eng.: A
,
355
(
1–2
), pp.
186
192
.10.1016/S0921-5093(03)00063-7
21.
Maïga
,
S. E. B.
,
Palm
,
S. J.
,
Nguyen
,
C. T.
,
Roy
,
G.
, and
Galanis
,
N.
,
2005
, “
Heat Transfer Enhancement by Using Nanofluids in Forced Convection Flows
,”
Int. J. Heat Fluid Flow
,
26
(
4
), pp.
530
546
.10.1016/j.ijheatfluidflow.2005.02.004
22.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
240
250
.10.1115/1.2150834
23.
Prasher
,
R.
,
Song
,
D.
,
Wang
,
J.
, and
Phelan
,
P. E.
,
2006
, “
Measurements of Nanofluid Viscosity and Its Implications for Thermal Applications
,”
Appl. Phys. Lett.
,
89
(
13
), p.
3
10.1063/1.2356113.
24.
Kulkarni
,
D. P.
,
Das
,
D. K.
, and
Chukwu
,
G. A.
,
2006
, “
Temperature Dependent Rheological Property of Copper Oxide Nanoparticles Suspension (Nanofluid)
,”
J. Nanosci. Nanotechnol.
,
6
(
4
), pp.
1150
1154
.10.1166/jnn.2006.187
25.
Kulkarni
,
D. P.
,
Das
,
D. K.
, and
Patil
,
S. L.
,
2007
, “
Effect of Temperature on Rheological Properties of Copper Oxide Nanoparticles Dispersed in Propylene Glycol and Water Mixture
,”
J. Nanosci. Nanotechnol.
,
7
(
7
), pp.
2318
2322
.10.1166/jnn.2007.437
26.
Namburu
,
P. K.
,
Kulkarni
,
D. P.
,
Dandekar
,
A.
, and
Das
,
D. K.
,
2007
, “
Experimental Investigation of Viscosity and Specific Heat of Silicon Dioxide Nanofluids
,”
Micro Nano Lett.
,
2
(
3
), pp.
67
71
.10.1049/mnl:20070037
27.
Namburu
,
P. K.
,
Kulkarni
,
D. P.
,
Misra
,
D.
, and
Das
,
D. K.
,
2007
, “
Viscosity of Copper Oxide Nanoparticles Dispersed in Ethylene Glycol and Water Mixture
,”
Exp. Therm. Fluid Sci.
,
32
(
2
), pp.
397
402
.10.1016/j.expthermflusci.2007.05.001
28.
Nguyen
,
C. T.
,
Desgranges
,
F.
,
Roy
,
G.
,
Galanis
,
N.
,
Maré
,
T.
,
Boucher
,
S.
, and
Angue Mintsa
,
H.
,
2007
, “
Temperature and Particle-Size Dependent Viscosity Data for Water-Based Nanofluids—Hysteresis Phenomenon
,”
Int. J. Heat Fluid Flow
,
28
(
6
), pp.
1492
1506
.10.1016/j.ijheatfluidflow.2007.02.004
29.
Avsec
,
J.
, and
Oblak
,
M.
,
2007
, “
The Calculation of Thermal Conductivity, Viscosity and Thermodynamic Properties for Nanofluids on the Basis of Statistical Nanomechanics
,”
Int. J. Heat Mass Transfer
,
50
(
21–22
), pp.
4331
4341
.10.1016/j.ijheatmasstransfer.2007.01.064
30.
Chen
,
H.
,
Ding
,
Y.
,
He
,
Y.
, and
Tan
,
C.
,
2007
, “
Rheological Behaviour of Ethylene Glycol Based Titania Nanofluids
,”
Chem. Phys. Lett.
,
444
(
4–6
), pp.
333
337
.10.1016/j.cplett.2007.07.046
31.
Williams
,
W.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
,
2008
, “
Experimental Investigation of Turbulent Convective Heat Transfer and Pressure Loss of Alumina/Water and Zirconia/Water Nanoparticle Colloids (Nanofluids) in Horizontal Tubes
,”
ASME J. Heat Transfer
,
130
(
4
), p.
042412
.10.1115/1.2818775
32.
Namburu
,
P. K.
,
Das
,
D. K.
,
Tanguturi
,
K. A.
, and
Vajjha
,
R. S.
,
2009
, “
Numerical Study of Turbulent Flow and Heat Transfer Characteristics of Nanofluids Considering Variable Properties
,”
Int. J. Therm. Sci.
,
48
(
2
), pp.
290
302
.10.1016/j.ijthermalsci.2008.01.001
33.
Sahoo
,
B. C.
,
Vajjha
,
R. S.
,
Ganguli
,
R.
,
Chukwu
,
G. A.
, and
Das
,
D. K.
,
2009
, “
Determination of Rheological Behavior of Aluminum Oxide Nanofluid and Development of New Viscosity Correlations
,”
Pet. Sci. Technol.
,
27
(
15
), pp.
1757
1770
.10.1080/10916460802640241
34.
Masoumi
,
N.
,
Sohrabi
,
N.
, and
Behzadmehr
,
A.
,
2009
, “
A New Model for Calculating the Effective Viscosity of Nanofluids
,”
J. Phys. D: Appl. Phys.
,
42
(
5
), p.
055501
.10.1088/0022-3727/42/5/055501
35.
Kole
,
M.
, and
Dey
,
T. K.
,
2010
, “
Viscosity of Alumina Nanoparticles Dispersed in Car Engine Coolant
,”
Exp. Therm. Fluid Sci.
,
34
(
6
), pp.
677
683
.10.1016/j.expthermflusci.2009.12.009
36.
Corcione
,
M.
,
2011
, “
Rayleigh-Bénard Convection Heat Transfer in Nanoparticle Suspensions
,”
Int. J. Heat Fluid Flow
,
32
(
1
), pp.
65
77
.10.1016/j.ijheatfluidflow.2010.08.004
37.
Kole
,
M.
, and
Dey
,
T. K.
,
2011
, “
Effect of Aggregation on the Viscosity of Copper Oxide–Gear Oil Nanofluids
,”
Int. J. Therm. Sci.
,
50
(
9
), pp.
1741
1747
.10.1016/j.ijthermalsci.2011.03.027
38.
Khanafer
,
K.
, and
Vafai
,
K.
,
2011
, “
A Critical Synthesis of Thermophysical Characteristics of Nanofluids
,”
Int. J. Heat Mass Transfer
,
54
(
19–20
), pp.
4410
4428
.10.1016/j.ijheatmasstransfer.2011.04.048
39.
Priya
,
K. R.
,
Suganthi
,
K. S.
, and
Rajan
,
K. S.
,
2012
, “
Transport Properties of Ultra-Low Concentration CuO–Water Nanofluids Containing Non-Spherical Nanoparticles
,”
Int. J. Heat Mass Transfer
,
55
(
17–18
), pp.
4734
4743
.10.1016/j.ijheatmasstransfer.2012.04.035
40.
Andrade
,
E. N. d. C.
,
1930
, “
The Viscosity of Liquids
,”
Nature
,
125
, pp.
309
310
.10.1038/125309b0
41.
American Society of Heating, R., and Engineers, A.-C.
,
2009
,
ASHRAE Handbook of Fundamentals
,
ASHRAE
,
Atlanta, GA
.
42.
AlfaAesar
,
2013
, “
Alfa Aesar
,” www.alfa.com
43.
Nanostructured & Amorphous Materials, I.
,
2013
, “
Nanoscale Products
,” http://www.nanoamor.com/
44.
NanoLab
,
2013
, “
NanoLab
,” http://www.nano-lab.com/
45.
White
,
F. M.
,
2005
,
Viscous Fluid Flow
,
McGraw-Hill
,
New York
.
46.
Kestin
,
J.
,
Sokolov
,
M.
, and
Wakeham
,
A. W.
,
1978
, “
Viscosity of Liquid Water in the Range −8 °C to 150 °C
,”
J. Phys. Chem. Ref. Data
,
7
(
3
), pp.
941
948
.10.1063/1.555581
47.
Wagner
,
N. J.
, and
Brady
,
J. F.
,
2009
, “
Shear Thickening in Colloidal Dispersions
,”
Phys. Today
,
62
(
10
), pp.
27
32
.10.1063/1.3248476
48.
Cheremisinoff
,
N. P.
,
1988
,
Encyclopedia of Fluid Mechanics: Rheology and Non-Newtonian flows
,
Gulf Publishing Company
,
Houston, TX
.
49.
Corcione
,
M.
,
2012
, “
Natural Convection in Nanofluids
,”
Nanoparticle Heat Transfer and Fluid Flow
,
W. J.
Minkowycz
,
E. M.
Sparrow
, and
J. P.
Abraham
, eds.,
CRC Press
,
New York
, pp.
277
318
.
50.
Minitab 16 Statistical Software
,
2013
, Computer Software, Minitab, Inc., State College, PA, www.minitab.com
.
51.
Kinloch
,
I. A.
,
Roberts
,
S. A.
, and
Windle
,
A. H.
,
2002
, “
A Rheological Study of Concentrated Aqueous Nanotube Dispersions
,”
Polymer
,
43
(
26
), pp.
7483
7491
.10.1016/S0032-3861(02)00664-X
52.
Ding
,
Y.
,
Alias
,
H.
,
Wen
,
D.
, and
Williams
,
R. A.
,
2006
, “
Heat Transfer of Aqueous Suspensions of Carbon Nanotubes (CNT Nanofluids)
,”
Int. J. Heat Mass Transfer
,
49
(
1–2
), pp.
240
250
.10.1016/j.ijheatmasstransfer.2005.07.009
53.
Garg
,
P.
,
Alvarado
,
J. L.
,
Marsh
,
C.
,
Carlson
,
T. A.
,
Kessler
,
D. A.
, and
Annamalai
,
K.
,
2009
, “
An Experimental Study on the Effect of Ultrasonication on Viscosity and Heat Transfer Performance of Multi-Wall Carbon Nanotube-Based Aqueous Nanofluids
,”
Int. J. Heat Mass Transfer
,
52
(
21–22
), pp.
5090
5101
.10.1016/j.ijheatmasstransfer.2009.04.029
54.
Aladag
,
B.
,
Halelfadl
,
S.
,
Doner
,
N.
,
Maré
,
T.
,
Duret
,
S.
, and
Estellé
,
P.
,
2012
, “
Experimental Investigations of the Viscosity of Nanofluids at Low Temperatures
,”
Appl. Energy
,
97
, pp.
876
880
.10.1016/j.apenergy.2011.12.101
55.
Halelfadl
,
S.
,
Estellé
,
P.
,
Aladag
,
B.
,
Doner
,
N.
, and
Maré
,
T.
,
2013
, “
Viscosity of Carbon Nanotubes Water-Based Nanofluids: Influence of Concentration and Temperature
,”
Int. J. Therm. Sci.
,
71
, pp.
111
117
.10.1016/j.ijthermalsci.2013.04.013
56.
Yang
,
Y.
,
Grulke
,
E. A.
,
Zhang
,
Z. G.
, and
Wu
,
G.
,
2006
, “
Thermal and Rheological Properties of Carbon Nanotube-in-Oil Dispersions
,”
J. Appl. Phys.
,
99
(
11
), p.
8
10.1063/1.2193161.
57.
Stickel
,
J. J.
, and
Powell
,
R. L.
,
2005
, “
Fluid Mechanics and Rheology of Dense Suspensions
,”
Annu. Rev. Fluid Mech.
,
37
(
1
), pp.
129
149
.10.1146/annurev.fluid.36.050802.122132
58.
Mueller
,
S.
,
Llewellin
,
E. W.
, and
Mader
,
H. M.
,
2010
, “
The Rheology of Suspensions of Solid Particles
,”
Proc. R. Soc. London, Ser. A
,
466
(2176), pp.
1201
1228
.10.1098/rspa.2009.0445
You do not currently have access to this content.