Fully developed turbulent flow of drag reducing fluids through a horizontal flow loop with concentric annular geometry was investigated using the particle image velocimetry (PIV) technique. Experiments were conducted at solvent Reynolds numbers ranged from 38,700 to 56,400. Axial mean velocity profile was found to be following the universal wall law close to the wall (i.e., y+ < 10), but it deviated from log law results with an increased slope in the logarithmic zone (i.e., y+ > 30). The study was also focused on turbulence statistics such as near wall Reynolds stress distribution, axial and radial velocity fluctuations, vorticity and turbulent kinetic energy budget.

References

References
1.
Toms
.,
B.
,
1948
, “
Some Observations on the Flow of Linear Polymer Solutions Through Straight Tubes at Large Reynolds Numbers
,”
First International Congress on Rheology
, pp.
135
141
.
2.
Hyoung
,
J. C.
, and
John
,
M. S.
,
1996
, “
Polymer-Induced Turbulent Drag Reduction
,”
Ind. Eng. Chem. Res
,
35
(
9
), pp.
2993
2998
.
3.
Shah
,
S. N.
,
Tareen
,
M.
, and
Clark
,
D.
,
2002
, “
Effects of Solids Loading on Drag Reduction in Polymeric Drilling Fluids Through Straight and Coiled Tubing
,”
J. Can. Pet. Technol.
,
41
(
5
), pp.
1
7
.10.2118/02-05-04
4.
Ercan
,
C.
, and
Ozbayoglu
,
M. E.
,
2009
, “
PHPA as a Frictional Pressure Reducer and Its Pressure Loss Estimation
,”
SPE/IADC
Middle East Drilling Technology Conference & Exhibition
, Manama, Bahrain.10.2118/125992-MS
5.
Lumley
,
J. L.
,
1969
, “
Drag Reduction by Additives
,”
Ann. Rev. Fluid Mech
,
1
, pp.
367
384
.10.1146/annurev.fl.01.010169.002055
6.
McComb
,
W. D.
, and
Chan
,
K. T. J.
,
1985
, “
Laser-Doppler Anemometer Measurements of Turbulent Structure in Drag-Reducing Fiber Suspensions
,”
J. Fluid Mech
,
152
, pp.
455
478
.10.1017/S0022112085000787
7.
Kamel
,
A.
, and
Shah
,
S. N.
,
2009
, “
Effects of Salinity and Temperature on Drag Reduction Characteristics of Polymers in Straight Circular Pipes
,”
J. Pet. Sci. Eng.
,
67
(
1–2
), pp.
23
33
.10.1016/j.petrol.2009.02.004
8.
Shah
,
S. N.
,
Kamel
,
A.
, and
Zhou
,
Y.
,
2006
, “
Drag Reduction Characteristics in Straight and Coiled Tubing—An Experimental Study
,”
J. Pet. Sci. Eng.
,
53
(
3–4
), pp.
179
188
.10.1016/j.petrol.2006.05.004
9.
Dschagarowa
,
E.
, and
Mennig
,
G.
,
1976
, Fortschr.-Ber. VDI-Z, Reihe 7/41.
10.
Dschagarowa
,
E.
, and
Mennig
,
G.
,
1977
, “
Influence of Molecular Weight and Molecular Conformation of Polymers on Turbulent Drag Reduction
,”
Rheol. Acta
,
16
(
3
), pp.
309
316
.10.1007/BF01523741
11.
Camail
,
M.
,
Margaillan
,
A.
,
Maesano
,
J. C.
,
Thuret
,
S.
, and
Vernet
,
J. L.
,
1998
, “
Synthesis and Structural Study of New Copolymers, Based on Acrylamide and N-Acryloyl Acids, With Persistent Drag Reduction Activity
,”
Polymer
,
39
(
14
), pp.
3187
3192
.10.1016/S0032-3861(97)00387-X
12.
Sher
,
I.
, and
Hetsroni
,
G.
,
2008
, “
A Mechanistic Model of Turbulent Drag Reduction by Additives
,”
Chem. Eng. Sci.
,
63
(
7
), pp.
1771
1778
.10.1016/j.ces.2007.11.035
13.
Japper-Jaafar
,
A.
,
Escudier
,
M. P.
, and
Poole
,
R. J.
,
2010
, “
Laminar, Transitional and Turbulent Annular Flow of Drag-Reducing Polymer Solutions
,”
J. Non-Newtonian Fluid Mech.
,
165
(
19–20
), pp.
1357
1372
.10.1016/j.jnnfm.2010.07.001
14.
Warholic
,
M. D.
,
Heist
,
D. K.
,
Katcher
,
M.
, and
Hanratty
,
T. J.
,
2001
, “
A Study With Particle-Image Velocimetry of the Influence of Drag-Reducing Polymers on the Structure of Turbulence
,”
Exp. Fluids
,
31
(
5
), pp.
474
483
.10.1007/s003480100288
15.
Ptasinski
,
P. K.
,
Nieuwstadt
,
F. T. M.
,
Van den brule
,
B. H. A. A.
, and
Hulsen
,
M. A.
,
2001
, “
Experiments in Turbulent Pipe Flow With Polymer Additives at Maximum Drag Reduction
,”
J. Flow Turbul. Combust.
,
66
(
2
), pp.
159
182
.10.1023/A:1017985826227
16.
Poole
,
R. J.
,
2010
, “
Development-Length Requirements for Fully Developed Laminar Flow in Concentric Annuli
,”
ASME J. Fluids Eng.
,
132
(
6
), p.
064501
.10.1115/1.4001694
17.
Munson
,
B. R.
,
Young
,
D. F.
, and
Okiishi
,
T. H.
,
2002
,
Fundamentals of Fluid Mechanics
,
4th. ed.
,
Wiley
, New York.
18.
LaVision
,
2006
, “
Flow Master
,” Product Catalogue.
19.
Nezu
,
I.
, and
Sanjou
,
M.
,
2011
, “
PIV and PTV Measurements in Hydro-Sciences With Focus on Turbulent Open-Channel Flows
,”
J. Hydroenviron. Res.
,
5
(
4
), pp.
215
230
.10.1016/j.jher.2011.05.004
20.
LaVision
,
2006
, “
Imager Intense
,” Product Catalogue.
21.
Solo PIV
,
2003
, “
Nd:YAG Laser System
,” Operator's Manual.
22.
Marchioli
,
C.
,
Vincenzo
,
A.
,
Salvetti
,
M. V.
, and
Soldati
,
A.
,
2006
, “
Mechanisms for Deposition and Resuspension of Heavy Particles in Turbulent Flow Over Wavy Interfaces
,”
Phys. Fluids
,
18
(
2
), p.
025102
.10.1063/1.2166453
23.
LaVision
,
2006
, “
Flow Master Getting Started
,” Product Manual.
24.
Kundu
,
P.
, and
Cohen
,
I.
,
2008
,
Fluid Mechanics
,
4th ed.
,
Elsevier
, Oxford.
25.
M-I SWACO
,
2007
, “
Poly-Plus Rd Polymer
,” Product Bulletin.
26.
Wyatt
,
N. B.
,
Gunther
,
C. M.
, and
Liberatore
,
M. W.
,
2011
, “
Drag Reduction Effectiveness of Dilute and Entangled Xanthan in Turbulent Pipe Flow
,”
J. Non-Newtonian Fluid Mech.
,
166
(
1–2
), pp.
25
31
.10.1016/j.jnnfm.2010.10.002
27.
Costello
,
B.
,
2005
,
The AR-G2 Magnetic Bearing Rheometer
,
TA Instruments
, Crawley, UK.
28.
Shah
,
R. K.
, and
London
,
A. I.
,
1978
,
Laminar Flow First Convection in Ducts
,
Academic
,
New York
.
29.
Escudier
,
M. P.
,
Gouldson
,
I. W.
, and
Jones
,
D. M.
,
1995
, “
Flow of Shear-Thinning Fluids in a Concentric Annulus
,”
Exp. Fluids
,
18
(
4
), pp.
225
238
.10.1007/BF00195092
30.
Jones
,
O. C.
, and
Leung
,
J. C. M.
,
1981
, “
An Improvement in the Calculation of Turbulent Friction in Smooth Concentric Annuli
,”
ASME J. Fluids Eng.
,
103
(
4
), pp.
615
623
.10.1115/1.3241781
31.
Colebrook
,
C. R.
,
1939
, “
Turbulent Flow in Pipes With Particular Reference to the Transition Region Between the Smooth and Rough Pipe Laws
,”
J. ICE (London)
,
11
(
4
), pp.
133
156
.10.1680/ijoti.1939.13150
32.
White
,
F. M.
,
2005
,
Viscous Fluid Flow
, 3rd ed.,
The McGraw-Hill Companies
, New York.
33.
Nouri
,
J. M.
,
Umur
,
H.
, and
Whitelaw
,
J. H.
,
1993
, “
Flow of Newtonian and Non-Newtonian Fluids in Concentric and Eccentric Annuli
,”
J. Fluid Mech.
,
253
, pp.
617
641
.10.1017/S0022112093001922
34.
Virk
,
P. S.
,
1975
, “
Drag Reduction Fundamentals
,”
AIChE J.
,
21
(
4
), pp.
625
656
.10.1002/aic.690210402
35.
Lumley
,
J. L.
,
1973
, “
Drag Reduction in Turbulent Flow by Polymer Additives
,”
J. Polym. Sci.
,
7
(
1
), pp.
263
290
.10.1002/pol.1973.230070104
36.
Rodriguez-Corredor
,
F. E.
,
Bizhani
,
M.
,
Ashrafuzzaman
,
M.
, and
Kuru
,
E.
,
2014
, “
An Experimental Investigation of Turbulent Water Flow in Concentric Annulus Using Particle Image Velocimetry Technique
,”
ASME J. Fluids Eng.
,
136
(
5
), p.
051203
.10.1115/1.4026136
37.
Sureshkumar
,
R.
,
Beris
,
A. N.
, and
Handler
,
R. A.
,
1997
, “
Direct Numerical Simulation of the Turbulent Channel Flow of a Polymer Solution
,”
Phys. Fluids
,
9
(
3
), pp.
743
755
.10.1063/1.869229
38.
Dimitropoulos
,
C. D.
,
Sureshkumar
,
R.
, and
Beris
,
A. N.
,
1998
, “
Direct Numerical Simulation of Viscoelastic Turbulent Channel Flow Exhibiting Drag Reduction: Effect of Variation of Rheological Parameters
,”
J. Non-Newtonian Fluid Mech.
,
79
(
2–3
), pp.
433
468
.10.1016/S0377-0257(98)00115-3
39.
Hunt
,
J. C. R.
, and
Durbin
,
P. A.
,
1999
, “
Perturbed Vortical Layers and Shear Sheltering
,”
Fluid Dyn. Res.
,
24
(
6
), pp.
375
404
.10.1016/S0169-5983(99)00009-X
40.
Ptasinski
,
P. K.
,
Boersma
,
B. J.
,
Nieuwstadt
,
F. T. M.
,
Hulsen
,
M. A.
,
Van Den Brule
,
B. H. A. A.
, and
Hunt
,
J. C. R.
,
2003
, “
Turbulent Channel Flow Near Maximum Drag Reduction: Simulations, Experiments and Mechanisms
,”
J. Fluid Mech.
,
490
, pp.
251
291
.10.1017/S0022112003005305
41.
den
Toonder
,
J. M. J.
,
1996
, “
Drag Reduction by Polymer Additives in a Turbulent Pipe Flow: Laboratory and Numerical Experiments
,” Ph.D. thesis, Delft University of Technology, Delft, The Netherlands.
42.
Bizhani
,
M.
,
Corredor
,
F.
, and
Kuru
,
E.
,
2015
, “
An Experimental Study of Turbulent Non-Newtonian Fluid Flow in Concentric Annuli Using Particle Image Velocimetry Technique
,”
Flow Turbul. Combust.
,
94
(
3
), pp.
527
554
.10.1007/s10494-014-9589-6
43.
Chung
,
S. Y.
,
Rhee
,
G. H.
, and
Sung
,
H. J.
,
2002
, “
Direct Numerical Simulation of Turbulent Concentric Annular Pipe Flow. Part 1: Flow Field
,”
Int. J. Heat Fluid Flow
,
23
(
4
), pp.
426
440
.10.1016/S0142-727X(02)00140-6
44.
LaVision
,
2006
, “
DaVis 7.2 Software
,” Product-Manual.
45.
Paschkewitz
,
J. S.
,
Dubief
,
Y.
,
Dimitropoulos
,
C. D.
,
Shaqfeh
,
E. S. J.
, and
Moin
,
P.
,
2004
, “
Numerical Simulation of Turbulent Drag Reduction Using Rigid Fibres
,”
J. Fluid Mech.
,
518
, pp.
281
317
.10.1017/S0022112004001144
46.
Kawaguchi
,
Y.
,
Segawa
,
T.
,
Feng
,
Z.
, and
Li
,
F.
,
2002
, “
Experimental Study on Drag-Reducing Channel Flow With Surfactant Additives––Spatial Structure of Turbulence Investigated by PIV System
,”
Int. J. Heat Fluid Flow
,
23
(
5
), pp.
700
709
.10.1016/S0142-727X(02)00166-2
47.
Jovanovic
,
J.
,
Pashtrapanska
,
M.
,
Frohnapfel
,
B.
,
Durst
,
F.
,
Koskinen
,
J.
, and
Koskinen
,
K.
,
2006
, “
On the Mechanism Responsible for Turbulent Drag Reduction by Dilute Addition of High Polymers: Theory, Experiments, Simulations, and Predictions
,”
ASME J. Fluids Eng.
,
128
(
1
), pp.
118
130
.10.1115/1.2073227
You do not currently have access to this content.