It is known that a kind of stall precursor-suppressed (SPS) casing treatment can be used to enhance compressor stall margin (SM) without recognizable efficiency loss. The further requirement in this regard is to develop an effective way to determine the variation range of the SM improvement during the design of such SPS casing treatment. In this investigation, based on the extrapolation hypothesis and the existing work, an extended stall inception model for quantitative evaluation of the SM enhancement is presented for both subsonic and transonic compressors with the SPS casing treatment. The capability of the extended model to quantitatively evaluate the SM enhancement with the SPS casing treatment is validated against the experimental data. The quantitative evaluation results show that the SPS casing treatments with different geometric parameters can improve the SM by a diverse percentage. In particular, for the facilities used in the present investigation, the experiments show that the SPS casing treatments can cause relevant increases of the SM. The change trend of the SM enhancement with various design parameters of the SPS casing treatment is in line with the corresponding theoretical results.

References

References
1.
Koch
,
C. C.
,
1970
, “
Experimental Evaluation of Outer Case Blowing or Bleeding of Single Stage Axial Flow Compressor
,” NASA Report No. CR-54592.
2.
Takata
,
H.
, and
Tsukuda
,
Y.
,
1977
, “
Stall Margin Improvement by Casing Treatment—Its Mechanism and Effectiveness
,”
ASME J. Eng. Gas Turbines Power
,
99
(
1
), pp.
121
133
.10.1115/1.3446241
3.
Osborn
,
W. M.
,
Lewis
,
G. W.
, and
Heidelberg
,
L. J.
,
1971
, “
Effect of Several Porous Casing Treatments on Stall Limit and on Overall Performance of and Axial-Flow Compressor Rotor
,” NASA Report No. TN D-6537.
4.
Kang
,
C. S.
,
McKenzie
,
A. B.
, and
Elder
,
R. L.
,
1995
, “
Recessed Casing Treatment Effects on Fan Performance and Flow Field
,”
ASME
Paper No. 95-GT-197. 10.1115/1995-GT-197
5.
Muller
,
M. W.
,
Schier
,
H. P.
,
Voges
,
M.
, and
Hah
,
C.
,
2011
, “
Investigation of Passage Flow Features in a Transonic Compressor Rotor With Casing Treatments
,”
ASME
Paper No. GT2011-45364. 10.1115/GT2011-45364
6.
Kroeckel
,
T.
,
Hiller
,
S. J.
, and
Jeschke
,
P.
,
2011
, “
Application of a Multistage Casing Treatment in a High-Speed Axial Compressor Test Rig
,” ASME No. GT2011-46315.
7.
Crook
,
A. J.
,
Greitzer
,
E. M.
,
Tan
,
C. S.
, and
Adamczyk
,
J. J.
,
1993
, “
Numerical Simulation of Compressor Endwall and Casing Treatment Flow Phenomena
,”
ASME J. Turbomach.
,
115
(
3
), pp.
501
502
.10.1115/1.2929280
8.
Wilke
,
I.
, and
Kau
,
H. P.
,
2002
, “
A Numerical Investigation of the Influence of Casing Treatments on the Tip Leakage Flow in a HPC Front Stage
,”
ASME
Paper No. GT-2002-30642. 10.1115/GT-2002-30642
9.
Hathaway
,
M. D.
,
2002
, “
Self-Recirculating Casing Treatment Concept for Enhanced Compressor Performance
,”
ASME
Paper No. GT-2002-30368. 10.1115/GT-2002-30368
10.
Ziabasharhagh
,
M.
,
McKenzie
,
A. B.
, and
Elder
,
R. L.
,
1992
, “
Recess Vane Passive Stall Control
,”
ASME
Paper No. 92-GT-36. 10.1115/1992-GT-36
11.
Sun
,
X.
,
Sun
,
D.
,
Liu
,
X.
,
Yu
,
W.
, and
Wang
,
X.
,
2014
, “
Theory of Compressor Stability Enhancement Using Novel Casing Treatment, Part I: Methodology
,”
AIAA J.
,
30
(
5
), pp.
1224
1235
.10.2514/1.B34900
12.
Sun
,
D.
,
Liu
,
X.
,
Jin
,
D.
,
Gui
,
X.
, and
Sun
,
X.
,
2014
, “
Theory of Compressor Stability Enhancement Using Novel Casing Treatment, Part II: Experiment
,”
AIAA J.
,
30
(
5
), pp.
1236
1247
.10.2514/1.B34901
13.
Houghton
,
T.
, and
Day
,
I.
,
2012
, “
Stability Enhancement by Casing Grooves: The Importance of Stall Inception Mechanism and Solidity
,”
ASME J. Turbomach.
,
134
(
2
), p.
021003
.10.1115/1.4002986
14.
Vo
,
H. D.
,
Tan
,
C. S.
, and
Greitzer
,
E. M.
,
2008
, “
Criteria for Spike Initiated Rotating Stall
,”
ASME J. Turbomach.
,
130
(
1
), p.
011023
.10.1115/1.2750674
15.
Rabe
,
D. C.
, and
Hah
,
C.
,
2002
, “
Application of Casing Circumferential Grooves for Improved Stall Margin in a Transonic Axial Compressor
,”
ASME
Paper No. GT2002-30641. 10.1115/GT2002-30641
16.
Muller
,
M. W.
,
Schiffer
,
H. P.
,
Voges
,
M.
, and
Hah
,
C.
,
2011
, “
Investigation of Passage Flow Features in a Transonic Compressor Rotor With Casing Treatments
,”
ASME
Paper No. GT2011-45364. 10.1115/GT2011-45364
17.
Sakuma
,
Y.
,
Watanabe
,
T.
,
Himeno
,
T.
,
Dai
,
K.
,
Murooka
,
T.
, and
Shuto
,
Y.
,
2014
, “
Numerical Analysis of Flow in a Transonic Compressor With a Single Circumferential Casing Groove: Influence of Groove Location and Depth on Flow Instability
,”
ASME J. Turbomach.
,
136
(
3
), p.
031017
.10.1115/1.4025575
18.
Sun
,
X.
,
1996
, “
On the Relation Between the Inception of Rotating Stall and Casing Treatment
,”
AIAA
Paper No. 96-2579. 10.2514/6.1996-2579
19.
Sun
,
X.
,
Sun
,
D.
, and
Yu
,
W.
,
2011
, “
Model to Predict Stall Inception of Transonic Axial Flow Fan/Compressors
,”
Chin. J. Aeronaut.
,
24
(
6
), pp.
687
700
.10.1016/S1000-9361(11)60081-2
20.
Jing
,
X.
, and
Sun
,
X.
,
2000
, “
Effect of Plate Thickness on Impedance of Perforated Plates With Bias Flow
,”
AIAA J.
,
38
(
9
), pp.
1573
1578
.10.2514/2.1139
21.
Jing
,
X.
, and
Sun
,
X.
,
2002
, “
Sound-Excited Flow and Acoustic Nonlinearity at an Orifice
,”
Phys. Fluids
,
14
(
1
), pp.
268
276
.10.1063/1.1423934
22.
Jing
,
X.
,
Sun
,
X.
,
Wu
,
J.
, and
Meng
,
K.
,
2001
, “
Effect of Grazing Flow on the Acoustic Impedance of an Orifice
,”
AIAA J.
,
39
(
8
), pp.
1478
1484
.10.2514/2.1498
23.
Sun
,
X.
,
Jing
,
X.
,
Zhang
,
H.
, and
Shi
,
Y.
,
2002
, “
Effect of Grazing-Bias Flow Interaction on Acoustic Impedance of Perforated Plates
,”
J. Sound Vib.
,
254
(
3
), pp.
557
573
.10.1006/jsvi.2001.4110
24.
Morris
,
W. J.
, and
Rusak
,
Z.
,
2013
, “
Stall Onset on Aerofoils at Low to Moderately High Reynolds Number Flows
,”
J. Fluid Mech.
,
733
, pp.
439
472
.10.1017/jfm.2013.440
25.
Rusak
,
Z.
, and
Morris
,
W. J.
,
2011
, “
Stall Onset on Airfoils at Moderately High Reynolds Number Flows
,”
ASME J. Fluids Eng.
,
133
(
11
), p.
111104
.10.1115/1.4005101
26.
Ekaterinaris
,
J. A.
, and
Platzer
,
M. F.
,
1998
, “
Computational Prediction of Airfoil Dynamic Stall
,”
Prog. Aerosp. Sci.
,
33
(
11
), pp.
759
846
.10.1016/S0376-0421(97)00012-2
27.
Spentzos
,
A.
,
Barakos
,
G.
,
Badcock
,
K.
, and
Richards
,
B.
,
2005
, “
Investigation of Three-Dimensional Dynamic Stall Using Computational Fluid Dynamics
,”
AIAA J.
,
43
(
5
), pp.
1023
1033
.10.2514/1.8830
28.
Gong
,
Y.
,
Tan
,
C. S.
,
Gordon
,
K. A.
, and
Greitzer
,
E. M.
,
1999
, “
A Computational Model for Short-Wavelength Stall Inception and Development in Multi-Stage Compressors
,”
ASME J. Turbomach.
,
121
(
4
), pp.
726
734
.10.1115/1.2836726
29.
Longley
,
J. P.
,
1997
, “
Calculating the Flow Field Behaviour of High-Speed Multi-Stage Compressors
,”
Proceedings of the ASME 42nd International Gas Turbine and Aeroengine Congress
,
ASME
Paper No. 97-GT-468. 10.1115/1997-GT-468
30.
Hoying
,
D. A.
,
Tan
,
C. S.
,
Huu
,
D. V.
, and
Greitzer
,
E. M.
,
1999
, “
Role of Blade Passage Flow Structures in Axial Compressor Rotating Stall Inception
,”
ASME J. Turbomach.
,
121
(
4
), pp.
735
742
.10.1115/1.2836727
31.
He
,
L.
,
1997
, “
Computational Study of Rotating-Stall Inception in Axial Compressors
,”
AIAA J.
,
13
(
1
), pp.
31
38
.
32.
Sun
,
X.
,
Liu
,
X.
,
Hou
,
R.
, and
Sun
,
D.
,
2013
, “
A General Theory of Flow Instability Inception in Turbomachinery
,”
AIAA J.
,
51
(
7
), pp.
1675
1687
.10.2514/1.J052186
33.
Liu
,
X.
,
Sun
,
D.
, and
Sun
,
X.
,
2014
, “
Basic Studies of Flow-Instability Inception in Axial Compressors Using Eigenvalue Method
,”
ASME J. Fluids Eng.
,
136
(
3
), p.
031102
.10.1115/1.4026417
34.
Liu
,
X.
,
Zhou
,
Y.
,
Sun
,
X.
, and
Sun
,
D.
,
2015
, “
Calculation of Flow Instability Inception in High Speed Axial Compressors
,”
ASME J. Turbomach.
,
137
(
6
), p.
061007
.10.1115/1.4028768
35.
Sears
,
W. R.
,
1955
, “
Rotating Stall in Axial Compressors
,”
Z. Angew. Math. Phys. ZAMP
,
6
(
6
), pp.
429
454
.10.1007/BF01600530
36.
Moore
,
F. K.
, and
Greitzer
,
E. M.
,
1986
, “
A Theory of Post-Stall Transients in Axial Compression Systems: Part I—Development of Equations
,”
ASME J. Eng. Gas Turbines Power
,
108
(
1
), pp.
68
76
.10.1115/1.3239887
37.
Nenni
,
J. P.
, and
Ludwig
,
G. R.
,
1974
, “
A Theory to Predict the Inception of Rotating Stall in Axial Flow Compressors
,”
AIAA
Paper No. 74-528. 10.2514/6.1974-528
38.
Ludwig
,
G. R.
, and
Nenni
,
J. P.
,
1979
, “
Basic Studies of Rotating Stall in Axial Flow Compressors
.”
39.
Dong
,
X.
,
Liu
,
X.
,
Sun
,
D.
, and
Sun
,
X.
,
2014
, “
Experimental Investigation on SPS Casing Treatment With Bias Flow
,”
Chin. J. Aeronaut.
,
24
(
6
), pp.
1352
1362
.10.1016/j.cja.2014.10.001
40.
Gysling
,
D. M.
, and
Greitzer
,
E. M.
,
1995
, “
Dynamic Control of Rotating Stall in Axial Flow Compressors Using Aeromechanical Feedback
,”
ASME J. Turbomach.
,
117
(
3
), pp.
307
319
.10.1115/1.2835665
41.
Feulner
,
M. R.
,
Hendricks
,
G. J.
, and
Paduano
,
J. D.
,
1996
, “
Modeling for Control of Rotating Stall in High-Speed Multi-Stage Axial Compressors
,”
ASME J. Turbomach.
,
118
(
1
), pp.
1
10
.10.1115/1.2836601
You do not currently have access to this content.