An experimental study is performed to analyze the shear driven droplet shedding on cold substrates with different airflow speeds typical of those in the flight conditions. Understanding the mechanism of simultaneous droplet shedding, coalescence, and solidification is crucial to devise solutions for mitigating aircraft in-flight icing. To mimic this scenario, the experimental setup is designed to generate shear flow as high as 90 m/s. The droplet shedding at high-speed is investigated on a cold surface (0 and −5 °C) of different wettabilities ranging from hydrophilic to superhydrophobic. Result analyses indicate that on a hydrophilic substrate, the droplets form a rivulet, which then freezes on the cold plate. In contrast, on the superhydrophobic surface, there is no rivulet formation. Instead, droplets roll over the substrate and detach from it under the effect of high shear flow.

References

References
1.
Milne
,
A. J. B.
, and
Amirfazli
,
A.
,
2009
, “
Drop Shedding by Shear Flow for Hydrophilic to Superhydrophobic Surfaces
,”
Langmuir
,
25
(
24
), pp.
14155
14164
.10.1021/la901737y
2.
White
,
E. B.
, and
Schmucker
,
J. A. J.
,
2008
, “
A Runback Criterion for Water Drops in a Turbulent Accelerated Boundary Layer
,”
ASME J. Fluids Eng.
,
130
(
6
), p.
061302
.10.1115/1.2917429
3.
Rein
,
M.
,
1993
, “
Phenomena of Liquid Drop Impact on Solid and Liquid Surfaces
,”
Fluid Dyn. Res.
,
12
(
2
), pp.
61
93
.10.1016/0169-5983(93)90106-K
4.
Yarin
,
A. L.
,
2006
, “
Drop Impact Dynamics: Splashing, Spreading, Receding, Bouncing…
,”
Annu. Rev. Fluid Mech.
,
38
, pp.
159
192
.10.1146/annurev.fluid.38.050304.092144
5.
Li
,
R.
,
Ashgriz
,
N.
, and
Chandra
,
S.
,
2010
, “
Maximum Spread of Droplet on Solid Surface: Low Reynolds and Weber Numbers
,”
ASME J. Fluids Eng.
,
132
(
6
), p.
061302
.10.1115/1.4001695
6.
Capizzano
,
F.
, and
Luliano
,
E.
,
2014
, “
A Eulerian Method for Water Droplet Impingement by Means of an Immersed Boundary Technique
,”
ASME J. Fluids Eng.
,
136
(
4
), p.
040906
.10.1115/1.4025867
7.
Wan
,
Y. P.
,
Zhang
,
H.
,
Jiang
,
X. Y.
,
Sampath
,
S.
, and
Prasad
,
V.
,
2000
, “
Role of Solidification, Substrate Temperature and Reynolds Number on Droplet Spreading in Thermal Spray Deposition: Measurements and Modeling
,”
ASME J. Heat Transfer
,
123
(
2
), pp.
382
389
.10.1115/1.1351893
8.
Carroll
,
B.
, and
Hidrovo
,
C.
,
2013
, “
Droplet Detachment Mechanism in a High-Speed Gaseous Micro Flow
,”
ASME J. Fluids Eng.
,
135
(
7
), p.
071206
.10.1115/1.4024057
9.
Farhangi
,
M.
,
Graham
,
P. J.
,
Choudhury
,
N. R.
, and
Dolatabadi
,
A.
,
2012
, “
Induced Detachment of Coalescing Droplets on Superhydrophobic Surfaces
,”
Langmuir
,
28
(
2
), pp.
1290
1303
.10.1021/la203926q
10.
Graham
,
P. J.
,
Farhangi
,
M.
, and
Dolatabadi
,
A.
,
2012
, “
Dynamics of Droplet Coalescence in Response to Increasing Hydrophobicity
,”
Phys. Fluids
,
24
(
11
), p.
112105
.10.1063/1.4767513
11.
Holl
,
M.
,
Patek
,
Z.
, and
Smrcek
,
L.
,
2000
, “
Wind Tunnel Testing of Performance Degradation of Ice Contaminated Airfoils
,”
22nd International Congress of Aeronautical Sciences
,
Harrogate, UK
, Aug. 27–Sept. 1, Paper No. 3.1.1.
12.
Alizadeh
,
A.
,
Yamada
,
M.
,
Li
,
R.
,
Shang
,
W.
,
Otta
,
S.
,
Zhong
,
S.
,
Ge
,
L.
,
Dhinojwala
,
A.
,
Conway
,
K. R.
,
Bahadur
,
V.
,
Vinciquerra
,
A. J.
,
Stephens
,
B.
, and
Blohm
,
M. L.
,
2012
, “
Dynamics of Ice Nucleation on Water Repellent Surfaces
,”
Langmuir
,
28
(
6
), pp.
3180
3186
.10.1021/la2045256
13.
Li
,
D.
, and
Chen
,
Z.
,
2014
, “
Experimental Study on Instantaneously Shedding Frozen Water Droplets From Cold Vertical Surface by Ultrasonic Vibration
,”
Exp. Therm. Fluid Sci.
,
53
, pp.
17
25
.10.1016/j.expthermflusci.2013.10.005
14.
McAlister
,
G.
,
Ettema
,
R.
, and
Marshall
,
J. S.
,
2004
, “
Wind-Driven Rivulet Breakoff and Droplet Flows in Microgravity and Terrestrial Gravity Conditions
,”
ASME J. Fluids Eng.
,
127
(
2
), pp.
257
266
.10.1115/1.1881696
15.
Antonini
,
C.
,
Innocenti
,
M.
,
Horn
,
T.
,
Marengo
,
M.
, and
Amirfazli
,
A.
,
2011
, “
Understanding the Effect of Superhydrophobic Coatings on Energy Reduction in Anti-Icing System
,”
Cold Reg. Sci. Technol.
,
67
(
1–2
), pp.
58
67
.10.1016/j.coldregions.2011.02.006
16.
Boinovich
,
L.
,
Emelyanenko
,
A. M.
,
Korolev
,
V. V.
, and
Pashinin
,
S. A.
,
2014
, “
Effect of Wettability on Sessile Drop Freezing: When Superhydrophobicity Stimulates an Extreme Freezing Delay
,”
Langmuir
,
30
(
6
), pp.
1659
1668
.10.1021/la403796g
17.
Kim
,
T. J.
,
Kanapuram
,
R.
,
Chhabra
,
A.
, and
Hidrovo
,
C.
,
2012
, “
Thermo-Wetting and Friction Reduction Characterization of Microtextured Superhydrophobic Surfaces
,”
ASME J. Fluids Eng.
,
134
(
11
), p.
114501
.10.1115/1.4007604
18.
Ma
,
M.
, and
Hill
,
R. M.
,
2006
, “
Superhydrophobic Surfaces
,”
Curr. Opin. Colloid Interface Sci.
,
11
(
4
), pp.
193
202
.10.1016/j.cocis.2006.06.002
19.
Choi
,
C. H.
,
Ulmanella
,
U.
,
Kim
,
J.
,
Ho
,
C. M.
, and
Kim
,
C. J.
,
2006
, “
Effective Slip and Friction Reduction in Nanograted Superhydrophobic Microchannels
,”
Phys. Fluid
,
18
(
8
), p.
087105
.10.1063/1.2337669
20.
Ou
,
J.
,
Perot
,
B.
, and
Rothstein
,
J. P.
,
2004
, “
Laminar Drag Reduction in Microchannels Using Ultra Hydrophobic Surfaces
,”
Phys. Fluid.
,
16
(
12
), pp.
4635
4643
.10.1063/1.1812011
21.
Furstner
,
R.
,
Barthlott
,
W.
,
Neinhuis
,
C.
, and
Walzel
,
P.
,
2005
, “
Wetting and Self-Cleaning Properties of Artificial Superhydrophobic Surfaces
,”
Langmuir
,
21
(
3
), pp.
956
961
.10.1021/la0401011
22.
Meuler
,
A. J.
,
Smith
,
J. D.
,
Varanasi
,
K. K.
,
Mabry
,
J. M.
,
McKinley
,
G. H.
, and
Cohen
,
R. E.
,
2010
, “
Relationships Between Water Wettability and Ice Adhesion
,”
Appl. Mater. Interfaces
,
2
(
11
), pp.
3100
3110
.10.1021/am1006035
23.
Kulinich
,
S.
, and
Farzaneh
,
M.
,
2009
, “
Ice Adhesion on Superhydrophobic Surfaces
,”
Appl. Surf. Sci.
,
225
(
18
), pp.
8153
8157
.10.1016/j.apsusc.2009.05.033
24.
Li
,
X.
,
Reinhoudt
,
D.
, and
Crego-Calama
,
M.
,
2007
, “
What Do We Need for a Superhydrophobic Surface? A Review on the Recent Progress in the Preparation of Superhydrophobic Surfaces
,”
Chem. Soc. Rev.
,
36
(
8
), pp.
1350
1368
.10.1039/b602486f
25.
Genzer
,
J.
, and
Efimenko
,
K.
,
2006
, “
Recent Developments in Superhydrophobic Surfaces and Their Relevance to Marine Fouling: A Review
,”
Biofouling
,
22
(
5
), pp.
339
360
.10.1080/08927010600980223
26.
Barthlott
,
W.
, and
Neinhuis
,
C.
,
1997
, “
Purity of the Sacred Lotus, or Escape From Contamination in Biological Surfaces
,”
Planta
,
202
(
1
), pp.
1
8
.10.1007/s004250050096
27.
Nychka
,
J. A.
, and
Gentleman
,
M. M.
,
2010
, “
Implications of Wettability in Biological Materials Science
,”
JOM
,
62
(
7
), pp.
39
48
.10.1007/s11837-010-0107-6
28.
Zhang
,
X.
,
Shi
,
F.
,
Niu
,
J.
,
Jiang
,
Y.
, and
Wang
,
Z.
,
2008
, “
Superhydrophobic Surfaces: From Structural Control to Functional Application
,”
J. Mater. Chem.
,
18
(
6
), pp.
621
633
.10.1039/b711226b
29.
Bhushan
,
B.
, and
Jung
,
Y. C.
,
2006
, “
Micro and Nanoscale Characterization of Hydrophobic and Hydrophilic Leaf Surfaces
,”
Nanotechnology
,
17
(
11
), pp.
2758
2772
.10.1088/0957-4484/17/11/008
30.
Moghtadernejad
,
S.
,
Mohammadi
,
M.
,
Jadidi
,
M.
,
Tembely
,
M.
, and
Dolatabadi
,
A.
,
2013
, “
Shear Driven Droplet Shedding on Surfaces With Various Wettabilities
,”
SAE Int. J. Aerosp.
,
6
(
2
), pp.
459
464
.
31.
Blasius
,
H.
,
1908
, “
Grenzschichten in Flüssigkeiten mit kleiner Reibung
,”
Z. Math. Phys.
,
56
, pp.
1
37
(English translation).
32.
Abramo
,
M. D.
,
Magelhaes
,
P. J.
, and
Ram
,
J. S.
,
2004
, “
Image Processing With ImageJ
,”
Biophotonics Int.
,
11
(
7
), pp.
36
42
.
33.
Enríquez
,
O. R.
,
Marín
,
A. G.
,
Winkels
,
K. G.
, and
Snoeijer
,
J. H.
,
2012
, “
Freezing Singularities in Water Drops
,”
Phys. Fluid
,
24
(
9
), p.
091102
.10.1063/1.4747185
34.
Anderson
,
D. M.
,
Worster
,
M. G.
, and
Davis
,
S. H.
,
1996
, “
The Case for a Dynamic Contact Angle in Containerless Solidification
,”
J. Cryst. Growth
,
163
(
3
), pp.
329
338
.10.1016/0022-0248(95)00970-1
35.
Lord Rayleigh,
1879
, “
On the Capillary Phenomena of Jets
,”
Proc. R. Soc. London, Ser. A
,
29
(196–199), pp.
71
97
.10.1098/rspl.1879.0015
36.
Antonini
,
C.
,
Amirfazli
,
A.
, and
Marengo
,
M.
,
2012
, “
Drop Impact and Wettability: From Hydrophilic to Superhydrophobic Surfaces
,”
Phys. Fluid
,
24
(
10
), p.
102104
.10.1063/1.4757122
37.
Villermaux
,
E.
, and
Bossa
,
B.
,
2011
, “
Drop Fragmentation on Impact
,”
J. Fluid Mech.
,
668
, pp.
412
435
.10.1017/S002211201000474X
38.
Richard
,
D.
,
Clanet
,
C.
, and
Quere
,
D.
,
2002
, “
Contact Time of a Bouncing Drop
,”
Nature
,
417
(
6891
), p.
811
.10.1038/417811a
39.
Yeong
,
Y. H.
,
Mudafort
,
R.
,
Steele
,
A.
,
Bayer
,
I.
, and
Loth
,
E.
,
2012
, “
Water Droplet Impact Dynamics at Icing Conditions With and Without Superhydrophobicity
,”
AIAA
Paper No. 2012-3134.2012-3134
40.
Reyssat
,
M.
,
Richard
,
D.
,
Clanet
,
Ch.
, and
Quere
,
D.
,
2010
, “
Dynamical Superhydrophobicity
,”
Faraday Discuss.
,
146
, pp.
19
33
.10.1039/c000410n
41.
Jung
,
S.
,
Tiwari
,
K. M.
,
Doan
,
V. N.
, and
Poulikakos
,
D.
,
2012
, “
Mechanism of Supercooled Droplet Freezing on Surfaces
,”
Nat. Commun.
,
3
, p.
615
.10.1038/ncomms1630
42.
Jung
,
S.
,
Tiwari
,
K. M.
, and
Poulikakos
,
D.
,
2012
, “
Frost Halos From Supercooled Water Droplets
,”
Proc. Natl. Acad. Sci. U. S. A.
,
109
(
40
), pp.
16073
16078
.10.1073/pnas.1206121109
43.
Criscione
,
A.
,
Kintea
,
D.
,
Roisman
,
I.
,
Jakirlic
,
S.
, and
Tropea
,
C.
,
2013
, “
A New Approach for Water Crystallization in the Kinetics-Limited Growth Region
,”
8th International Conference on Multiphase Flow
,
Jeju, Korea
, May 26–31.
44.
Criscione
,
A.
,
Kintea
,
D.
,
Tukovic
,
Z.
,
Jakirlic
,
S.
,
Roisman
,
I.
, and
Tropea
,
C.
,
2013
, “
Crystallization of Supercooled Water: A Level-Set-Based Modeling of the Dendrite Tip Velocity
,”
Int. J. Heat Mass Transfer
,
66
, pp.
830
837
.10.1016/j.ijheatmasstransfer.2013.07.079
45.
Ivantsov
,
G.
,
1947
, “
Temperature Field Around Spherical, Cylindrical, and Needle-Shaped Crystals Which Grow in Supercooled Melt
,”
Dokl. Akad. Nauk SSSR
,
558
, pp.
567
569
.
46.
Mullins
,
W. W.
, and
Sekerta
,
R. F.
,
1964
, “
The Stability of a Planar Interface During Solidification of a Dilute Binary Alloy
,”
J. Appl. Phys.
,
35
(
2
), pp.
444
451
.10.1063/1.1713333
47.
Shibkov
,
A. A.
,
Zheltov
,
M. A.
,
Korolev
,
A. A.
,
Kazakov
,
A. A.
, and
Leonov
,
A. A.
,
2005
, “
Crossover From Diffusion-Limited to Kinetics-Limited Growth of Ice Crystals
,”
J. Cryst. Growth
,
285
(
1–2
), pp.
215
227
.10.1016/j.jcrysgro.2005.08.007
48.
Farhadi
,
S.
,
Farzaneh
,
M.
, and
Kulinich
,
S. A.
,
2011
, “
Anti-Icing Performance of Superhydrophobic Surfaces
,”
Appl. Surf. Sci.
,
257
(
14
), pp.
6264
6269
.10.1016/j.apsusc.2011.02.057
49.
Wier
,
K. A.
, and
McCarthy
,
T. J.
,
2006
, “
Condensation on Ultrahydrophobic Surfaces and Its Effect on Droplet Mobility: Ultrahydrophobic Surfaces Are Not Always Water Repellant
,”
Langmuir
,
22
(
6
), pp.
2433
2436
.10.1021/la0525877
50.
Mockenhaupt
,
B.
,
Ensikat
,
H.
,
Spaeth
,
M.
, and
Barthlott
,
W.
,
2008
, “
Superhydrophobicity of Biological and Technical Surfaces Under Moisture Condensation: Stability in Relation to Surface Structure
,”
Langmuir
,
24
(
23
), pp.
13591
13597
.10.1021/la802351h
51.
Nareh
,
R. D.
, and
Beysens
,
D. A.
,
2007
, “
Growth Dynamics of Water Drops on a Square-Pattern Rough Hydrophobic Surface
,”
Langmuir
,
23
(
12
), pp.
6486
6489
.10.1021/la062021y
52.
Xio
,
X.
,
Cheng
,
Y. T.
,
Sheldon
,
B. W.
, and
Rankin
,
J.
,
2008
, “
Condensed Water on Superhydrophobic Carbon Films
,”
J. Mater. Res.
,
23
(
8
), pp.
2174
2178
.10.1557/JMR.2008.0260
53.
Karmouch
,
R.
, and
Ross
,
G. G.
,
2010
, “
Experimental Study on the Evolution of Contact Angles With Temperature Near the Freezing Point
,”
J. Phys. Chem. C.
,
114
(
9
), pp.
4063
4066
.10.1021/jp911211m
54.
Kulinich
,
S. A.
,
Farhadi
,
S.
,
Nose
,
K.
, and
Du
,
X. W.
,
2010
, “
Superhydrophobic Surfaces: Are They Really Ice-Repellent?
,”
Langmuir
,
27
(
1
), pp.
25
29
.10.1021/la104277q
55.
Varanasi
,
K.
,
Deng
,
T.
,
Smith
,
J. D.
,
Hsu
,
M.
, and
Bhate
,
N.
,
2010
, “
Frost Formation and Ice Adhesion on Superhydrophobic Surfaces
,”
Appl. Phys. Lett.
,
97
(
23
), p.
234102
.10.1063/1.3524513
56.
Kulinich
,
S. A.
, and
Farzaneh
,
M.
,
2011
, “
On Ice-Releasing Properties of Rough Hydrophobic Coatings
,”
Cold Reg. Sci. Technol.
,
65
(
1
), pp.
60
64
.10.1016/j.coldregions.2010.01.001
57.
Menini
,
R.
,
Ghalmi
,
Z.
, and
Farzaneh
,
M.
,
2011
, “
Highly Resistant Icephobic Coatings on Aluminum Alloys
,”
Cold Reg. Sci. Technol.
,
65
(
1
), pp.
65
69
.10.1016/j.coldregions.2010.03.004
58.
Ensikat
,
H. J.
,
Schulte
,
A. J.
,
Koch
,
K.
, and
Barthlott
,
W.
,
2009
, “
Droplets on Superhydrophobic Surfaces: Visualization of the Contact Area by Cryo-Scanning Electron Microscopy
,”
Langmuir
,
25
(
22
), pp.
13077
13083
.10.1021/la9017536
You do not currently have access to this content.