In this paper, we study the three-dimensional (3D) flow of an electrically conducting fluid in a cubic cavity with the top wall moving and subjected to an external magnetic field. The governing flow and electromagnetic field equations are integrated by a second-order space and time accurate numerical scheme, implemented on a graphics processing unit (GPU) with high parallel efficiency. Solutions for several Reynolds and Stuart numbers have been obtained on sufficiently fine grids to achieve grid independent solutions. As expected, the magnetic field significantly influences the circulation in the cavity and modifies the shape and locations of the primary and secondary eddies. The observed flow patterns are illustrated graphically as well as through selected line plots and tabulated data. With increasing magnetic field strength, the center of the primary eddy is seen to shift to the top right corner. Further, situations where the flow is unsteady in the absence of the magnetic field have become steady after a certain value of the magnetic interaction parameter.

References

References
1.
Ghia
,
U.
,
Ghia
,
K. N.
, and
Shin
,
C.
,
1982
, “
High-Resolutions for Incompressible Flow Using the Navier–Stokes Equations and a Multigrid Method
,”
J. Comput. Phys.
,
48
(
3
), pp.
387
411
.10.1016/0021-9991(82)90058-4
2.
Gupta
,
M.
,
Manohar
,
R. P.
, and
Stephenson
,
J. W.
,
1982
, “
High Order Finite Difference Method for Fluid Flow Problems
,”
10th IMACS World Congress on System Simulation and Scientific Computation
,
International Association for Mathematics and Computers in Simulation
, pp.
212
214
.
3.
Perić
,
M.
,
Kessler
,
R.
, and
Scheuerer
,
G.
,
1988
, “
Comparison of Finite-Volume Numerical Methods With Staggered and Colocated Grids
,”
Comput. Fluids
,
16
(
4
), pp.
389
403
.10.1016/0045-7930(88)90024-2
4.
Kondo
,
N.
,
Tosaka
,
N.
, and
Nishimura
,
T.
,
1991
, “
Third-Order Upwind Finite Element Formulations for Incompressible Viscous Flow Problems
,”
Comput. Methods Appl. Mech. Eng.
,
93
(
2
), pp.
169
187
.10.1016/0045-7825(91)90150-5
5.
Huser
,
A.
, and
Biringen
,
S.
,
1992
, “
Calculation of Two-Dimensional Shear-Driven Cavity Flows at High Reynolds Numbers
,”
Int. J. Numer. Methods Fluids
,
14
(
9
), pp.
1087
1109
.10.1002/fld.1650140906
6.
Sundaresan
,
S.
,
Nagarajan
,
S.
,
Deshpande
,
S.
, and
Narasimha
,
R.
,
1998
, “
2D Lid-Driven Cavity Flow at High Reynolds Numbers: Some Interesting Fluid-Dynamical Issues
,”
16th International Conference on Numerical Methods in Fluid Dynamics
,
Archon
,
France
, July 6–10, pp.
231
236
.
7.
Aydin
,
M.
, and
Fenner
,
R.
,
2001
, “
Boundary Element Analysis of Driven Cavity Flow for Low and Moderate Reynolds Numbers
,”
Int. J. Numer. Methods Fluids
,
37
(
1
), pp.
45
64
.10.1002/fld.164
8.
Sahin
,
M.
, and
Owens
,
R. G.
,
2003
, “
A Novel Fully Implicit Finite Volume Method Applied to the Lid-Driven Cavity Problem. Part I: High Reynolds Number Flow Calculations
,”
Int. J. Numer. Methods Fluids
,
42
(
1
), pp.
57
77
.10.1002/fld.442
9.
Zhang
,
J.
,
2003
, “
Numerical Simulation of 2D Square Driven Cavity Using Fourth-Order Compact Finite Difference Schemes
,”
Comput. Math. Appl.
,
45
(
1
), pp.
43
52
.10.1016/S0898-1221(03)80006-8
10.
Bruneau
,
C.-H.
, and
Saad
,
M.
,
2006
, “
The 2D Lid-Driven Cavity Problem Revisited
,”
Comput. Fluids
,
35
(
3
), pp.
326
348
.10.1016/j.compfluid.2004.12.004
11.
Pasquim
,
B.
, and
Mariani
,
V.
,
2008
, “
Solutions for Incompressible Viscous Flow in a Triangular Cavity Using Cartesian Grid Method
,”
Comput. Model. Eng. Sci.
,
35
(
2
), pp.
113
132
.
12.
Heaton
,
C.
,
2008
, “
On the Appearance of Moffatt Eddies in Viscous Cavity Flow as the Aspect Ratio Varies
,”
Phys. Fluids (1994–present)
,
20
(
10
), p.
103102
.10.1063/1.2994750
13.
Kalita
,
J. C.
, and
Gupta
,
M. M.
,
2010
, “
A Streamfunction–Velocity Approach for 2D Transient Incompressible Viscous Flows
,”
Int. J. Numer. Methods Fluids
,
62
(
3
), pp.
237
266
.
14.
Patil
,
D.
,
Lakshmisha
,
K.
, and
Rogg
,
B.
,
2006
, “
Lattice Boltzmann Simulation of Lid-Driven Flow in Deep Cavities
,”
Comput. Fluids
,
35
(
10
), pp.
1116
1125
.10.1016/j.compfluid.2005.06.006
15.
Bustamante
,
C.
,
Florez
,
W.
,
Power
,
H.
,
Giraldo
,
M.
, and
Hill
,
A.
,
2011
, “
Control Volume-Radial Basis Function Solution of 2D Driven Cavity Flow in Terms of the Velocity Vorticity Formulation
,”
Comput. Model. Eng. Sci.
,
79
(
2
), pp.
103
129
.
16.
Guo
,
X.
,
Zhong
,
C.
,
Zhuo
,
C.
, and
Cao
,
J.
,
2014
, “
Multiple-Relaxation-Time Lattice Boltzmann Method for Study of Two-Lid-Driven Cavity Flow Solution Multiplicity
,”
Theor. Comput. Fluid Dyn.
,
28
(
2
), pp.
215
231
.10.1007/s00162-013-0312-3
17.
Backx
,
E.
, and
Wirz
,
H. J.
,
1975
, “
Numerical Solution of the Navier–Stokes Equations for a 3-D Driven Cavity Flow
,”
GAMM Conference on Numerical Methods in Fluid Mechanics
, pp.
7
14
.
18.
Freitas
,
C. J.
,
Street
,
R. L.
,
Findikakis
,
A. N.
, and
Koseff
,
J. R.
,
1985
, “
Numerical Simulation of Three-Dimensional Flow in a Cavity
,”
Int. J. Numer. Methods Fluids
,
5
(
6
), pp.
561
575
.10.1002/fld.1650050606
19.
Koseff
,
J.
, and
Street
,
R.
,
1984
, “
The Lid-Driven Cavity Flow: A Synthesis of Qualitative and Quantitative Observations
,”
ASME J. Fluids Eng.
,
106
(
4
), pp.
390
398
.10.1115/1.3243136
20.
Ku
,
H. C.
,
Hirsh
,
R. S.
, and
Taylor
,
T. D.
,
1987
, “
A Pseudospectral Method for Solution of the Three-Dimensional Incompressible Navier–Stokes Equations
,”
J. Comput. Phys.
,
70
(
2
), pp.
439
462
.10.1016/0021-9991(87)90190-2
21.
Iwatsu
,
R.
,
Ishii
,
K.
,
Kawamura
,
T.
,
Kuwahara
,
K.
, and
Hyun
,
J. M.
,
1989
, “
Numerical Simulation of Three-Dimensional Flow Structure in a Driven Cavity
,”
Fluid Dyn. Res.
,
5
(
3
), pp.
173
.10.1016/0169-5983(89)90020-8
22.
Huang
,
Y.
,
Ghia
,
U.
,
Osswald
,
G.
, and
Ghia
,
K.
,
1992
, “
Velocity-Vorticity Simulation of Unsteady 3-D Viscous Flow Within a Driven Cavity
,” in
Numerical Simulation of 3-D Incompressible Unsteady Viscous Laminar Flows
,
Springer
Berlin
, pp.
54
66
.
23.
Arnal
,
M.
,
Lauer
,
O.
,
Lilek
,
Ž.
, and
Perić
,
M.
,
1992
, “
Prediction of Three-Dimensional Unsteady Lid-Driven Cavity Flow
,” in
Numerical Simulation of 3-D Incompressible Unsteady Viscous Laminar Flows
,
Springer
,
Berlin
, pp.
13
24
.
24.
Cantaloube
,
B.
, and
Le
,
T.
,
1992
, “
Direct Simulation of Unsteady Flow in a Three-Dimensional Lid-Driven Cavity
,” in
Numerical Simulation of 3-D Incompressible Unsteady Viscous Laminar Flows
,
Springer
,
Berlin
, pp.
25
33
.
25.
Deshpande
,
M. D.
, and
Shankar
,
P. N.
,
1993
, “
Structure of Laminar Flow in a Three-Dimensional Driven Cavity
,”
Proceedings of the Fluid Dynamics Symposium in Honour of Professor R. Narasimha on his 60th Birthday, Proceedings of the Fluid Dynamics Symposium
, pp.
25
36
.
26.
Jordan
,
S.
, and
Ragab
,
S.
,
1994
, “
On the Unsteady and Turbulent Characteristics of the Three-Dimensional Shear-Driven Cavity Flow
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
439
449
.10.1115/1.2910296
27.
Cortes
,
A.
, and
Miller
,
J.
,
1994
, “
Numerical Experiments With the Lid Driven Cavity Flow Problem
,”
Comput. Fluids
,
23
(
8
), pp.
1005
1027
.10.1016/0045-7930(94)90002-7
28.
Yeckel
,
A.
,
Smith
,
J. W.
, and
Derby
,
J. J.
,
1997
, “
Parallel Finite Element Calculation of Flow in a Three-Dimensional Lid-Driven Cavity Using the CM-5 and T3D
,”
Int. J. Numer. Methods Fluids
,
24
(
12
), pp.
1449
1461
.10.1002/(SICI)1097-0363(199706)24:12<1449::AID-FLD569>3.0.CO;2-8
29.
Albensoeder
,
S.
,
Kuhlmann
,
H.
, and
Rath
,
H.
,
2001
, “
Three-Dimensional Centrifugal-Flow Instabilities in the Lid-Driven-Cavity Problem
,”
Phys. Fluids (1994–present)
,
13
(
1
), pp.
121
135
.10.1063/1.1329908
30.
Guermond
,
J.-L.
,
Migeon
,
C.
,
Pineau
,
G.
, and
Quartapelle
,
L.
,
2002
, “
Start-Up Flows in a Three-Dimensional Rectangular Driven Cavity of Aspect Ratio 1:1: 2 at Re = 1000
,”
J. Fluid Mech.
,
450
, pp.
169
199
.10.1017/S0022112001006383
31.
Sheu
,
T. W.
, and
Tsai
,
S.
,
2002
, “
Flow Topology in a Steady Three-Dimensional Lid-Driven Cavity
,”
Comput. Fluids
,
31
(
8
), pp.
911
934
.10.1016/S0045-7930(01)00083-4
32.
Albensoeder
,
S.
, and
Kuhlmann
,
H. C.
,
2005
, “
Accurate Three-Dimensional Lid-Driven Cavity Flow
,”
J. Comput. Phys.
,
206
(
2
), pp.
536
558
.10.1016/j.jcp.2004.12.024
33.
De
,
S.
,
Nagendra
,
K.
, and
Lakshmisha
,
K.
,
2009
, “
Simulation of Laminar Flow in a Three-Dimensional Lid-Driven Cavity by Lattice Boltzmann Method
,”
Int. J. Numer. Methods Heat Fluid Flow
,
19
(
6
), pp.
790
815
.10.1108/09615530910973011
34.
Yau
,
Y.
,
Badarudin
,
A.
, and
Rubini
,
P.
,
2012
, “
A Numerical Study of Secondary Flow and Large Eddies in a Driven Cavity
,”
J. Mech. Sci. Technol.
,
26
(
1
), pp.
93
102
.10.1007/s12206-011-0913-y
35.
Siegmann-Hegerfeld
,
T.
,
Albensoeder
,
S.
, and
Kuhlmann
,
H. C.
,
2013
, “
Three-Dimensional Flow in a Lid-Driven Cavity With Width-to-Height Ratio of 1.6
,”
Exp. Fluids
,
54
(
6
), pp.
1
9
.
36.
Tang
,
X.
,
Su
,
Y.
,
Wang
,
F.
, and
Li
,
L.
,
2013
, “
Numerical Research on Lid-Driven Cavity Flows Using a Three-Dimensional Lattice Boltzmann Model on Non-Uniform Meshes
,”
Sci. China Technol. Sci.
,
56
(
9
), pp.
2178
2187
.10.1007/s11431-013-5312-4
37.
Dong
,
D. B.
,
Shi
,
S. J.
,
Hou
,
Z. X.
, and
Chen
,
W. S.
,
2014
, “
Numerical Simulation of Viscous Flow in a 3D Lid-Driven Cavity Using Lattice Boltzmann Method
,”
Appl. Mech. Mater.
,
444
, pp.
395
399
.
38.
Verstappen
,
R.
,
Wissink
,
J.
,
Cazemier
,
W.
, and
Veldman
,
A.
,
1994
, “
Direct Numerical Simulations of Turbulent Flow in a Driven Cavity
,”
Future Gener. Comput. Syst.
,
10
(
2
), pp.
345
350
.10.1016/0167-739X(94)90041-8
39.
Deshpande
,
M.
, and
Milton
,
S. G.
,
1998
, “
Kolmogorov Scales in a Driven Cavity Flow
,”
Fluid Dyn. Res.
,
22
(
6
), pp.
359
381
.10.1016/S0169-5983(97)00043-9
40.
Leriche
,
E.
,
Gavrilakis
,
S.
, and
Labrosse
,
G.
,
2000
, “
Direct Numerical Simulation of Lid-Driven Cavity Flow Within a 3D Inhomogeneous Domain on an NEC-SX4 Supercomputer
,”
International Conference on Applications of High-Performance Computing in Engineering
, pp.
359
369
.
41.
Yao
,
H.
,
Cooper
,
R.
, and
Raghunathan
,
S.
,
2004
, “
Numerical Simulation of Incompressible Laminar Flow Over Three-Dimensional Rectangular Cavities
,”
ASME J. Fluids Eng.
,
126
(
6
), pp.
919
927
.10.1115/1.1845531
42.
Paramane
,
S. B.
, and
Sharma
,
A.
,
2008
, “
Consistent Implementation and Comparison of FOU, CD, SOU, and QUICK Convection Schemes on Square, Skew, Trapezoidal, and Triangular Lid-Driven Cavity Flow
,”
Numer. Heat Transfer B
,
54
(
1
), pp.
84
102
.10.1080/10407790802122519
43.
De Vicente
,
J.
,
Rodríguez
,
D.
,
Theofilis
,
V.
, and
Valero
,
E.
,
2011
, “
Stability Analysis in Spanwise-Periodic Double-Sided Lid-Driven Cavity Flows With Complex Cross-Sectional Profiles
,”
Comput. Fluids
,
43
(
1
), pp.
143
153
.10.1016/j.compfluid.2010.09.033
44.
Darr
,
J. H.
, and
Vanka
,
S. P.
,
1991
, “
Separated Flow in a Driven Trapezoidal Cavity
,”
Phys. Fluids A: Fluid Dyn. (1989–1993)
,
3
(
3
), pp.
385
392
.10.1063/1.858207
45.
Jyotsna
,
R.
, and
Vanka
,
S. P.
,
1995
, “
Multigrid Calculation of Steady, Viscous Flow in a Triangular Cavity
,”
J. Comput. Phys.
,
122
(
1
), pp.
107
117
.10.1006/jcph.1995.1200
46.
González
,
L.
,
Ahmed
,
M.
,
Kühnen
,
J.
,
Kuhlmann
,
H. C.
, and
Theofilis
,
V.
,
2011
, “
Three-Dimensional Flow Instability in a Lid-Driven Isosceles Triangular Cavity
,”
J. Fluid Mech.
,
675
, pp.
369
396
.10.1017/S002211201100022X
47.
Jyotsna
,
R.
, and
Vanka
,
S. P.
,
1995
, “
A Pressure Based Multigrid Procedure for the Navier–Stokes Equations on Unstructured Grids
,” The 7th Copper Mountain Conference on Multigrid Methods, Copper Mountain, CO, April 2–7, pp. 409.
48.
Glowinski
,
R.
,
Guidoboni
,
G.
, and
Pan
,
T.-W.
,
2006
, “
Wall-Driven Incompressible Viscous Flow in a Two-Dimensional Semi-Circular Cavity
,”
J. Comput. Phys.
,
216
(
1
), pp.
76
91
.10.1016/j.jcp.2005.11.021
49.
Shinn
,
A. F.
,
Goodwin
,
M. A.
, and
Vanka
,
S. P.
,
2009
, “
Immersed Boundary Computations of Shear- and Buoyancy-Driven Flows in Complex Enclosures
,”
Int. J. Heat Mass Transfer
,
52
(
17
), pp.
4082
4089
.10.1016/j.ijheatmasstransfer.2009.03.044
50.
Al-Salem
,
K.
,
Öztop
,
H. F.
,
Pop
,
I.
, and
Varol
,
Y.
,
2012
, “
Effects of Moving Lid Direction on MHD Mixed Convection in a Linearly Heated Cavity
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
1103
1112
.10.1016/j.ijheatmasstransfer.2011.09.062
51.
Oztop
,
H. F.
,
Al-Salem
,
K.
, and
Pop
,
I.
,
2011
, “
MHD Mixed Convection in a Lid-Driven Cavity With Corner Heater
,”
Int. J. Heat Mass Transfer
,
54
(
15
), pp.
3494
3504
.10.1016/j.ijheatmasstransfer.2011.03.036
52.
Sivasankaran
,
S.
,
Malleswaran
,
A.
,
Lee
,
J.
, and
Sundar
,
P.
,
2011
, “
Hydro-Magnetic Combined Convection in a Lid-Driven Cavity With Sinusoidal Boundary Conditions on Both Sidewalls
,”
Int. J. Heat Mass Transfer
,
54
(
1
), pp.
512
525
.10.1016/j.ijheatmasstransfer.2010.09.018
53.
Yu
,
P.
,
Qiu
,
J.
,
Qin
,
Q.
, and
Tian
,
Z. F.
,
2013
, “
Numerical Investigation of Natural Convection in a Rectangular Cavity Under Different Directions of Uniform Magnetic Field
,”
Int. J. Heat Mass Transfer
,
67
, pp.
1131
1144
.10.1016/j.ijheatmasstransfer.2013.08.087
54.
Shatrov
,
V.
,
Mutschke
,
G.
, and
Gerbeth
,
G.
,
2003
, “
Three-Dimensional Linear Stability Analysis of Lid-Driven Magnetohydrodynamic Cavity Flow
,”
Phys. Fluids
,
15
(
8
), pp.
2141
2151
.10.1063/1.1582184
55.
Patankar
,
S. V.
, and
Spalding
,
D. B.
,
1972
, “
A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows
,”
Int. J. Heat Mass Transfer
,
15
(
10
), pp.
1787
1806
.10.1016/0017-9310(72)90054-3
56.
Leonard
,
B. P.
,
1979
, “
A Stable and Accurate Convective Modelling Procedure Based on Quadratic Upstream Interpolation
,”
Comput. Methods Appl. Mech. Eng.
,
19
(
1
), pp.
59
98
.10.1016/0045-7825(79)90034-3
57.
Vanka
,
S. P.
,
2013
, “
2012 Freeman Scholar Lecture: Computational Fluid Dynamics on Graphics Processing Units
,”
ASME J. Fluids Eng.
,
135
(
6
), p.
061401
.10.1115/1.4023858
58.
Shinn
,
A. F.
,
Vanka
,
S. P.
, and
Hwu
,
W. W.
,
2010
, “
Direct Numerical Simulation of Turbulent Flow in a Square Duct Using a Graphics Processing Unit (GPU)
,”
AIAA
Paper No. 2010-5029. 10.2514/6.2010-5029
59.
Vanka
,
S. P.
,
Shinn
,
A. F.
, and
Sahu
,
K. C.
,
2011
, “
Computational Fluid Dynamics Using Graphics Processing Units: Challenges and Opportunities
,”
ASME International Mechanical Engineering Congress and Exposition
,
American Society of Mechanical Engineers
, pp.
429
437
.
60.
Chaudhary
,
R.
,
2011
, “
Studies of Turbulent Flows in Continuous Casting of Steel With and Without Magnetic Field
,” Ph.D. thesis, University of Illinois at Urbana-Champaign, IL.
61.
Shinn
,
A. F.
,
2011
, “
Large Eddy Simulations of Turbulent Flows on Graphics Processing Units: Application to Film-Cooling Flows
,” Ph.D. thesis, University of Illinois at Urbana-Champaign, IL.
62.
Chaudhary
,
R.
,
Ji
,
C.
,
Thomas
,
B. G.
, and
Vanka
,
S. P.
,
2011
, “
Transient Turbulent Flow in a Liquid-Metal Model of Continuous Casting, Including Comparison of Six Different Methods
,”
Metall. Mater. Trans. B
,
42
(
5
), pp.
987
1007
.10.1007/s11663-011-9526-1
63.
Ansys, Inc.
,
2009
, Ansys Fluent, “
12.0 documentation
,”.
You do not currently have access to this content.