A recently developed academic computational fluid dynamics (CFD) code, named Galatea, is used for the computational study of fully turbulent flow over the NASA common research model (CRM) in a wing-body configuration with and without horizontal tail. A brief description of code's methodology is included, while attention is mainly directed toward the accurate and efficient prediction of pressure distribution on wings' surfaces as well as of computation of lift and drag forces against different angles of attack, using an h-refinement approach and a parallel agglomeration multigrid scheme. The obtained numerical results compare close with both the experimental wind tunnel data and those of reference solvers.

References

1.
Blazek
,
J.
,
2001
,
Computational Fluid Dynamics: Principles and Applications
,
Elsevier Science
,
Kidlington
, UK.
2.
Barth
,
T. J.
,
1992
, “
Aspects of Unstructured Grids and Finite-Volume Solvers for the Euler and Navier–Stokes Equations
,” Report No. AGARD-R-787, pp.
6.1
6.61
.
3.
Kallinderis
,
Y.
,
1996
, “
A 3-D Finite Volume Method for the Navier–Stokes Equations With Adaptive Hybrid Grids
,”
Appl. Numer. Math.
,
20
(
4
), pp.
387
406
.10.1016/0168-9274(95)00102-6
4.
Kallinderis
,
Y.
, and
Ahn
,
T.
,
2005
, “
Incompressible Navier–Stokes Method with General Hybrid Meshes
,”
J. Comput. Phys.
,
210
(
1
), pp.
75
108
.10.1016/j.jcp.2005.04.002
5.
Rhee
,
S. H.
,
2005
, “
Unstructured Grid Based Reynolds-Averaged Navier–Stokes Method for Liquid Tank Sloshing
,”
ASME J. Fluids Eng.
,
127
(
3
), pp.
572
582
.10.1115/1.1906267
6.
Sorensen
,
K. A.
,
Hassan
,
O.
,
Morgan
,
K.
, and
Weatherill
,
N. P.
,
2003
, “
A Multigrid Accelerated Hybrid Unstructured Mesh Method for 3D Compressible Turbulent Flow
,”
Comput. Mech.
,
31
(
1–2
), pp.
101
114
.10.1007/s00466-002-0397-9
7.
Ahuja
,
V.
,
Hosangadi
,
A.
, and
Arunajatesan
,
S.
,
2001
, “
Simulations of Cavitating Flows Using Hybrid Unstructured Meshes
,”
ASME J. Fluids Eng.
,
123
(
2
), pp.
331
340
.10.1115/1.1362671
8.
Lohner
,
R.
,
1992
, “
Finite Element Methods in CFD: Grid Generation, Adaptivity and Parallelization
,”
AGARD-FDP-VKI Special Course at VKI
, Rhode-Saint-Genese, pp. 8.1–8.58, No. AGARD-R-787.
9.
Lygidakis
,
G. N.
, and
Nikolos
,
I. K.
,
2013
, “
Using a High-Order Spatial/Temporal Scheme and Grid Adaptation With a Finite-Volume Method for Radiative Heat Transfer
,”
Numer. Heat Transfer, Part B
,
64
(
2
), pp.
89
117
.10.1080/10407790.2013.784129
10.
Vanella
,
M.
,
Posa
,
A.
, and
Balaras
,
E.
,
2014
, “
Adaptive Mesh Refinement for Immersed Boundary Methods
,”
ASME J. Fluids Eng.
,
136
(
4
), p.
040909
. 10.1115/1.4026415
11.
Lien
,
F.-S.
, and
Leschziner
,
M. A.
,
1993
, “
A Pressure-Velocity Solution for Compressible Flow and Its Application to Shock/Boundary-Layer Interaction Using Second-Moment Turbulence Closure
,”
ASME J. Fluids Eng.
,
115
(
4
), pp.
717
725
.10.1115/1.2910204
12.
Cadafalch
,
J.
,
Pérez-Segarra
,
C. D.
,
Cònsul
,
R.
, and
Oliva
,
A.
,
2001
, “
Verification of Finite Volume Computations on Steady-State Fluid Flow and Heat Transfer
,”
ASME J. Fluids Eng.
,
124
(
1
), pp.
11
21
. 10.1115/1.1436092
13.
Drikakis
,
D.
, and
Tsangaris
,
S.
,
1993
, “
Real Gas Effects for Compressible Nozzle Flows
,”
ASME J. Fluids Eng.
,
115
(
1
), pp.
115
120
.10.1115/1.2910092
14.
Trivedi
,
C.
,
Cervantes
,
M. J.
,
Gandhi
,
B. K.
, and
Dahlhaug
,
O. G.
,
2013
, “
Experimental and Numerical Studies for a High Head Francis Turbine at Several Operating Points
,”
ASME J. Fluids Eng.
,
135
(
11
), p.
111102
.10.1115/1.4024805
15.
Roe
,
P. L.
,
1981
, “
Approximate Riemann Solvers, Parameter Vectors and Difference Schemes
,”
J. Comput. Phys.
,
43
(
2
), pp.
357
371
.10.1016/0021-9991(81)90128-5
16.
Oggian
,
T.
,
Drikakis
,
D.
,
Youngs
,
D. L.
, and
Williams
,
R. J. R.
,
2014
, “
A Hybrid Compressible–Incompressible Computational Fluid Dynamics Method for Richtmyer–Meshkov Mixing
,”
ASME J. Fluids Eng.
,
136
(
9
), p.
091210
. 10.1115/1.4027484
17.
Van Albada
,
G. D.
,
Van Leer
,
B.
, and
Roberts
,
W. W.
,
1982
, “
A Comparative Study of Computational Methods in Cosmic Gas Dynamics
,”
J. Astron. Astrophys.
,
108
(1), pp.
76
84
.
18.
Sweby
,
P. K.
,
1984
, “
High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws
,”
SIAM J. Numer. Anal.
,
21
(
5
), pp.
995
1011
.10.1137/0721062
19.
Barth
,
T. J.
, and
Jespersen
,
D. C.
,
1989
, “
The Design and Application of Upwind Schemes on Unstructured Meshes
,”
AIAA
Paper No. 1989-0366.10.2514/6.1989-366
20.
Koobus
,
B.
,
Farhat
,
C.
, and
Tran
,
H.
,
2000
, “
Computation of Unsteady Viscous Flows Around Moving Bodies Using the k-ε Turbulence Model on Unstructured Dynamic Grids
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
11–12
), pp.
1441
1466
.10.1016/S0045-7825(00)00172-9
21.
Hwang
,
R. R.
, and
Chiang
,
T. P.
,
1995
, “
Numerical Simulation of Vertical Forced Plume in a Crossflow of Stably Stratified Fluid
,”
ASME J. Fluids Eng.
,
117
(
4
), pp.
696
705
.10.1115/1.2817325
22.
Arakawa
,
C.
,
Qian
,
Y.
, and
Kubota
,
T.
,
1996
, “
Turbulent Flow Simulation of a Runner for Francis Hydraulic Turbines Using Pseudo-Compressibility
,”
ASME J. Fluids Eng.
,
118
(
2
), pp.
285
291
.10.1115/1.2817375
23.
Zheng
,
X.
,
Liao.
,
C.
,
Liu
,
C.
,
Sung
,
C. H.
, and
Huang
,
T. T.
,
1997
, “
Multigrid Computation of Incompressible Flows Using Two-Equation Turbulence Models: Part I—Numerical Method
,”
ASME J. Fluids Eng.
,
119
(
4
), pp.
893
899
.10.1115/1.2819513
24.
Zheng
,
X.
,
Liao
,
C.
,
Liu
,
C.
,
Sung
,
C. H.
, and
Huang
,
T. T.
,
1997
, “
Multigrid Computation of Incompressible Flows Using Two-Equation Turbulence Models: Part II—Applications
,”
ASME J. Fluids Eng.
,
119
(
4
), pp.
900
905
.10.1115/1.2819514
25.
Ebrahimi
,
K.
,
Zheng
,
A. C.
, and
Hosni
,
M. H.
,
2013
, “
A Computational Study of Turbulent Airflow and Tracer Gas Diffusion in a Generic Aircraft Cabin Model
,”
ASME J. Fluids Eng.
,
135
(
11
), p.
111105
.10.1115/1.4025096
26.
Yang
,
J.
,
Zhou.
,
M.
,
Li
,
S. Y.
,
Bu
,
S. S.
, and
Wang
,
Q. W.
,
2014
, “
Three-Dimensional Numerical Analysis of Turbulent Flow in Porous Media Formed by Periodic Arrays of Cubic, Spherical, or Ellipsoidal Particles
,”
ASME J. Fluids Eng.
,
136
(
1
), p.
011102
. 10.1115/1.4025365
27.
Nizard
,
H.
,
Toutant
,
A.
, and
Massines
,
F.
,
2014
, “
Numerical Study of Turbulent Confined Jets Impinging on a Heated Substrate for Thin Film Deposition
,”
ASME J. Fluids Eng.
,
136
(
10
), p.
101102
.10.1115/1.4027429
28.
Saffman
,
P. G.
, and
Wilcox
,
D. C.
,
1974
, “
Turbulence-Model Predictions for Turbulent Boundary Layers
,”
AIAA J.
,
12
(
4
), pp.
541
546
. 10.2514/3.49282
29.
Ghidoni
,
A.
,
Colombo
,
A.
,
Rebay
,
S.
, and
Bassi
,
F.
,
2013
, “
Simulation of the Transitional Flow in a Low Pressure Gas Turbine Cascade With a High-Order Discontinuous Galerkin Method
,”
ASME J. Fluids Eng.
,
135
(
7
), p.
071101
.10.1115/1.4024107
30.
Menter
,
F.
,
Ferreira
,
J. C.
,
Esch
,
T.
, and
Konno
,
B.
,
2003
, “
The SST Turbulence Model With Improved Wall Treatment for Heat Transfer Predictions in Gas Turbines
,”
International Gas Turbine Congress
, Tokyo, Japan, No. IGTC2003-TS-059.
31.
Morden
,
J. A.
,
Hemida
,
H.
, and
Baker
,
C. J.
,
2015
, “
Comparison of RANS and Detached Eddy Simulation Results to Wind-Tunnel Data for the Surface Pressures Upon a Class 43 High-Speed Train
,”
ASME J. Fluids Eng.
,
137
(
4
), p.
041108
.10.1115/1.4029261
32.
Hsiao
,
C. T.
, and
Pauley
,
L. L.
,
1999
, “
Numerical Computation of Tip Vortex Flow Generated by a Marine Propeller
,”
ASME J. Fluids Eng.
,
121
(
3
), pp.
638
645
.10.1115/1.2823517
33.
Wang
,
D. Y.
,
Zhou
,
Y.
,
Zhu
,
Y.
, and
Tse
,
T. K. T.
,
2012
, “
Numerical Prediction of Wind Flow Around Irregular Meshes
,”
ASME J. Fluids Eng.
,
134
(
7
), p.
071108
.10.1115/1.4006225
34.
Salhi
,
Y.
,
Si-Ahmed
,
E. K.
,
Degrez
,
G.
, and
Legrand
,
J.
,
2012
, “
Numerical Investigations of Passive Scalar Transport in Turbulent Taylor–Couette Flows: Large Eddy Simulation Versus Direct Numerical Simulations
,”
ASME J. Fluids Eng.
,
134
(
4
), p.
041105
.10.1115/1.4006467
35.
Cadieux
,
F.
,
Domaradzki
,
J. A.
,
Sayadi
,
T.
, and
Sanjeeb
,
B.
,
2014
, “
Direct Numerical Simulation and Large Eddy Simulation of Laminar Separation Bubbles at Moderate Reynolds Numbers
,”
ASME J. Fluids Eng.
,
136
(
6
), p.
060902
. 10.1115/1.4023787
36.
Zhang
,
J.
,
Tejada-Martinez
,
A. E.
, and
Zhang
,
Q.
,
2014
, “
Evaluation of Large Eddy Simulation and RANS for Determining Hydraulic Performance of Disinfection Systems for Water Treatment
,”
ASME J. Fluids Eng.
,
136
(
12
), p.
121102
.10.1115/1.4027652
37.
Mejial
,
J. M.
,
Sadiki
,
A
,
Molina
,
A.
,
Chejne
,
F.
, and
Pantangi
,
P.
,
2015
, “
Large Eddy Simulation of the Mixing of a Passive Scalar in a High-Schmidt Turbulent Jet
,”
ASME J. Fluids Eng.
,
137
(
3
), p.
031301
.10.1115/1.4029224
38.
Goodrich
,
W. D.
,
Lamb.
,
J. P.
, and
Bertin
,
J. J.
,
1972
, “
On the Numerical Solution of Two-Dimensional, Laminar Compressible Flows With Imbedded Shock Waves
,”
ASME J. Fluids Eng.
,
94
(
4
), pp.
765
769
.10.1115/1.3425548
39.
Song
,
C. C. S.
, and
Yuan
,
M.
,
1988
, “
A Weakly Compressible Flow Model and Rapid Convergence Methods
,”
ASME J. Fluids Eng.
,
110
(
4
), pp.
441
445
.10.1115/1.3243575
40.
Karypis
,
G.
, and
Kumar
,
V.
,
1999
, “
A Fast and Highly Quality Multilevel Scheme for Partitioning Irregular Graphs
,”
SIAM J. Sci. Comput.
,
20
(
1
), pp.
359
392
. 10.1137/S1064827595287997
41.
Lanteri
,
S.
,
1996
, “
Parallel Solutions of Compressible Flows Using Overlapping and Nonoverlapping Mesh Partitioning Strategies
,”
Parallel Computing
,
22
(
7
), pp.
943
968
.10.1016/0167-8191(96)00036-1
42.
Venkatakrishnan
,
V.
,
1995
, “
Implicit Schemes and Parallel Computing in Unstructured Grid CFD
,”
26th Computational Fluid Dynamics Lecture Series Program, Von Karman Institute for Fluid Dynamics
, Rhode Saint-Genese, Belgium.
43.
Lygidakis
,
G. N.
, and
Nikolos
,
I. K.
,
2012
, “
Using the Finite-Volume Method and Hybrid Unstructured Meshes to Compute Radiative Heat Transfer in 3-D Geometries
,”
Numer. Heat Transfer, Part B
,
62
(
5
), pp.
289
314
.10.1080/10407790.2012.707012
44.
Mavriplis
,
D. J.
,
1998
, “
Multigrid Strategies for Viscous Flow Solvers on Anisotropic Unstructured Meshes
,”
J. Comput. Phys.
,
145
(
1
), pp.
141
165
.10.1006/jcph.1998.6036
45.
Mavriplis
,
D. J.
,
1997
, “
Directional Coarsening and Smoothing for Anisotropic Navier–Stokes Problems
,”
Electronic Trans. Numer. Anal.
,
6
, pp.
182
197
.
46.
Carre
,
G.
,
Fournier
,
L.
, and
Lanteri
,
S.
,
2000
, “
Parallel Linear Multigrid Algorithms for the Acceleration of Compressible Flow Calculations
,”
Comput. Methods Appl. Mech. Eng.
,
184
(
2–4
), pp.
427
448
.10.1016/S0045-7825(99)00238-8
47.
Lygidakis
,
G. N.
, and
Nikolos
,
I. K.
,
2014
, “
Using a Parallel Spatial/Angular Agglomeration Multigrid Scheme to Accelerate FVM Radiative Heat Transfer Computation—Part I: Methodology
,”
Numer. Heat Transfer, Part B
,
66
(
6
), pp.
471
497
.10.1080/10407790.2014.949561
48.
Lygidakis
,
G. N.
, and
Nikolos
,
I. K.
,
2014
, “
Using a Parallel Spatial/Angular Agglomeration Multigrid Scheme to Accelerate FVM Radiative Heat Transfer Computation—Part I: Numerical Results
,”
Numer. Heat Transfer, Part B
,
66
(
6
), pp.
498
525
.10.1080/10407790.2014.949509
49.
Nishikawa
,
H.
,
Diskin
,
B.
, and
Thomas
,
J. L.
,
2010
, “
Critical Study of Agglomerated Multigrid Methods for Diffusion
,”
J. AIAA
,
48
(
4
), pp.
839
847
.10.2514/1.J050055
50.
Nishikawa
,
H.
, and
Diskin
,
B.
,
2011
, “
Development and Application of Parallel Agglomerated Multigrid Methods for Complex Geometries
,”
AIAA
Paper No. 2011-3232.10.2514/6.2011-3232
51.
Nishikawa
,
H.
,
Diskin
,
B.
,
Thomas
,
J. L.
, and
Hammond
,
D. P.
,
2013
, “
Recent Advances in Agglomerated Multigrid
,”
AIAA
Paper No. 2013-0863. 10.2514/6.2013-863
52.
Ferziger
,
J. H.
, and
Peric
,
M.
,
2002
,
Computational Methods for Fluid Dynamics
, 3rd ed.,
Springer
, Berlin, Heidelberg.10.1007/978-3-642-56026-2
53.
Celik
,
I.
,
1993
, “
Numerical Uncertainty in Fluid Flow Calculations: Needs for Future Research
,”
ASME J. Fluids Eng.
,
115
(
2
), pp.
194
195
.10.1115/1.2910123
54.
Schobeiri
,
M. T.
,
Abdelfattah
,
S.
, and
Chibli
,
H.
,
2012
, “
Investigating the Cause of Computational Fluid Dynamics Deficiencies in Accurately Predicting the Efficiency and Performance of High Pressure Turbines: A Combined Experimental and Numerical Study
,”
ASME J. Fluids Eng.
,
134
(
10
), p.
101104
.10.1115/1.4007679
55.
Levy
,
D. W.
,
Laflin
,
K. R.
,
Tinoco
,
E. N.
,
Vassberg
,
J. C.
,
Mani
,
M.
,
Rider
,
B.
,
Rumsey
,
C.
,
Wahls
,
R. A.
,
Morrison
,
J. H.
,
Brodersen
,
O. P.
,
Crippa
,
S.
,
Mavriplis
,
D. J.
, and
Murayama
,
M.
,
2013
, “
Summary of Data From the Fifth AIAA CFD Drag Prediction Workshop
,”
AIAA
Paper No. 2013-0046. 10.2514/6.2013-46
56.
Scalabrin
,
L. C.
, and
de Souza
,
R. F.
,
2013
, “
Grid Assessment Using the NASA Common Research Model (CRM) Wind Tunnel Data
,”
AIAA
Paper No. 2013-0052. 10.2514/6.2013-52
57.
Sclafani
,
A. J.
,
Vassberg
,
J. C.
,
Winkler
,
C.
,
Dorgan
,
A. J.
,
Mani
,
M.
,
Olsen
,
M. E.
, and
Coder
,
J. C.
,
2013
, “
DPW-5 Analysis of the CRM in a Wing-Body Configuration Using Structured and Unstructured Meshes
,”
AIAA
Paper No. 2013-0048. 10.2514/6.2013-48
58.
Murayama
,
M.
,
Yamamoto
,
K.
,
Hashimoto
,
A.
,
Ishida
,
T.
,
Ueno
,
M.
,
Tanaka
,
K.
, and
Ito
,
Y.
,
2013
, “
Summary of JAXA Studies for the Fifth AIAA CFD Drag Prediction Workshop Using UPACS and FaSTAR
,”
AIAA
Paper No. 2013-0049. 10.2514/6.2013-49
59.
Park
,
M. A.
,
Laflin
,
K. R.
,
Chaffin
,
M. S.
,
Powell
,
N.
, and
Levy
,
D. W.
,
2013
, “
CFL3D, FUN3D and NSU3D Contributions to the Fifth Drag Prediction Workshop
,”
AIAA
Paper No. 2013-0050. 10.2514/6.2013-50
60.
Ceze
,
M.
, and
Fidkowski
,
K. J.
,
2013
, “
Drag Prediction Using Adaptive Discontinuous Finite Elements
,”
AIAA
Paper No. 2013-0051. 10.2514/6.2013-51
61.
Lee-Rausch
,
E. M.
,
Hammond
,
D. P.
,
Nielsen
,
E. J.
,
Pirzadeh
,
S. Z.
, and
Rumsey
,
C. L.
,
2010
, “
Application of the FUN3D Unstructured-Grid Navier–Stokes Solver to the 4th AIAA Drag Prediction Workshop Cases
,”
AIAA
Paper No. 2010-4551. 10.2514/6.2010-4551
62.
Vos
,
J. B.
,
Sanchi
,
S.
, and
Gehri
,
A.
,
2013
, “
DPW4 Results Using Different Grids Including Near-Field/Far-Field Drag Analysis
,”
J. Aircr.
,
50
(
5
), pp.
1615
1627
.10.2514/1.C032161
63.
Vassberg
,
J. C.
,
Tinoco
,
E. N.
,
Mani
,
M.
,
Rider
,
B.
,
Zickuhr
,
T.
,
Levy
,
D. W.
,
Brodersen
,
O. P.
,
Eisfeld
,
B.
,
Crippa
,
S.
,
Wahls
,
R. A.
,
Morrison
,
J. H.
,
Mavriplis
,
D. J.
, and
Murayama
,
M.
,
2010
, “
Summary of the Fourth AIAA CFD Drag Prediction Workshop
,”
AIAA
Paper No. 2010-4547. 10.2514/6.2010-4547
64.
Mavriplis
,
D.
, and
Long
,
M.
,
2010
, “
NSU3D Results for the Fourth AIAA Drag Prediction Workshop
,”
AIAA
Paper No. 2010-4550. 10.2514/6.2010-4550
65.
Lallemand
,
M. H.
,
1988
, “
Etude de schemas Runge-Kutta a 4 pas pour la resolution multigrille des equations d’ Euler 2D
,” Raport de Recherche, Inria.
66.
Katz
,
A.
, and
Jameson
,
A.
,
2009
, “
Multicloud: Multigrid Convergence With a Meshless Operator
,”
J. Comput. Phys.
,
228
(
14
), pp.
5237
5250
.10.1016/j.jcp.2009.04.023
67.
Delis
,
A. I.
, and
Nikolos
,
I. K.
,
2012
, “
A Novel Multidimensional Solution Reconstruction and Edge-Based Limiting Procedure for Unstructured Cell-Centered Finite Volumes With Application to Shallow Water Dynamics
,”
J. Numer. Methods Fluids
,
71
(
5
), pp.
584
633
. 10.1002/fld.3674
You do not currently have access to this content.