Past numerical and experimental research has shown that the draft tube inlet velocity is critically important to hydropower plant performance, especially in the case of low-head installations. However, less is known about the influence of flow parameters on turbine performance particularly swirl distribution. Based on the influence of draft tube flow characteristics on the overall performance of a low-head turbine, this research proposes a methodology for optimizing draft tube inlet velocity profiles as a new approach to controlling the flow conditions in order to yield better draft tube and turbine performance. Numerical optimization methods have been used successfully for a variety of design problems. However, addressing the optimization of boundary conditions in hydraulic turbines poses a new challenge. In this paper, three different vortex equations for representing the inlet velocity profile are applied to a cone diffuser, and the behavior of the objective function is analyzed. As well, the influence of the quantitative correlation between the swirling flow at the cone inlet and the analytical blade shape, flow rate, and swirl number using the best inlet velocity profiles is evaluated. We also include a discussion on the development of a flow structure caused by the inlet swirl parameters. Finally, we present an analysis of the influence of flow rate and swirl number on the behavior of the optimization process.

References

References
1.
Swiderski
,
P.
, and
Martin
,
J.
,
1999
, “
High Power Francis Runner Upgrade With a New Design Runner
,” Norcan Hydraulic Turbine, Inc., Report.
2.
Qinghua
,
S.
,
2004
, “
Rehabilitation of a Low Head Francis Turbine by Runner Replacement
,”
22nd IAHR Symposium on Hydraulic Machinery and Systems
,
Design Methods Turbines, Stockholm
,
Sweden
.
3.
Avellan
,
F.
,
2000
, “
Flow Investigation in a Francis Draft Tube: The FLINDT Project
,”
Hydraulic Machinery and Systems 20th IAHR Symposium
,
Charlotte
,
NC
, Paper No. DY-03.
4.
Iliescu
,
M.
,
Ciocan
,
G.
, and
Avellan
,
F.
,
2002
, “
3D PIV and LDV Measurements at the Outlet of a Francis Turbine Draft Tube
,”
ASME
Paper No. FEDSM2002-31332. 10.1115/FEDSM2002-31332
5.
Masse
,
B.
,
1999
, “
Simulation Creates Potential 5 Million Revenue Gain From Hydropower Turbines
,”
J. Fluent Software Users
JA101
, pp.
1
4
.
6.
Mauri
,
S.
,
Kueny
,
J.
, and
Avellan
,
F.
,
2005
, “
Werlé-Legendre Separation in a Hydraulic Machine Draft Tube
,”
ASME J. Fluids Eng.
,
126
(
6
), pp.
976
980
.10.1115/1.1839930
7.
Lipej
,
A.
, and
Poloni
,
C.
,
2000
, “
Design of Kaplan Runner Using Multiobjective Genetic Algorithm Optimization
,”
J. Hydraul. Res.
,
38
(
1
), pp.
73
79
.10.1080/00221680009498361
8.
Swiderski
,
J.
,
Martin
,
J.
, and
Norrena
,
R.
,
2001
, “
Automated Runner Blade Design Optimization Process Based on CFD Verification
,” Waterpower XII, Salt Lake City, UT.
9.
Tomas
,
L.
,
Pedretti
,
C.
,
Chiappa
,
T.
,
Francois
,
M.
, and
Stoll
,
P.
,
2002
, “
Automated Design of a Francis Turbine Runner Using Global Optimization Algorithms
,”
XXIst IAHR Symposium on Hydraulic Machinery and Systems
,
Lausanne
.
10.
Peng
,
G.
,
Cao
,
S.
,
Ishizuka
,
M.
, and
Hayama
,
S.
,
2002
, “
Design Optimization of Axial Flow Hydraulic Turbine Runner; Part II—Multi-Objective Constrained Optimization Method
,”
Int. J. Numer. Methods Fluids
39
(6), pp.
533
548
.10.1002/fld.343
11.
Enomoto
,
Y.
,
Kurosawa
,
S.
, and
Suzuki
,
T.
,
2004
, “
Design Optimization of a Francis Turbine Runner Using Multi-Objective Genetic Algorithm
,”
22nd IAHR Symposium on Hydraulic Machinery and Systems
,
Stockholm
,
Sweden
, No. A01-2, pp.
1
10
.
12.
Wu
,
J.
,
Shimmei
,
K.
,
Tani
,
K.
,
Niikura
,
K.
, and
Sato
,
J.
,
2007
, “
CFD-Based Design Optimization for Hydro Turbines
,”
ASME J. Fluids Eng.
,
129
(
2
), pp.
159
168
.10.1115/1.2409363
13.
Kim
,
J.-H.
,
Kim
,
J.-W.
, and
Kim
,
K.-Y.
,
2011
, “
Axial-Flow Ventilation Fan Design Through Multi-Objective Optimization to Enhance Aerodynamic Performance
,”
ASME J. Fluids Eng.
,
133
(
10
), p.
101101
.10.1115/1.4004906
14.
Ventura
,
C.
,
Jacobs
,
P.
,
Rowlands
,
A.
,
Petrie-Repar
,
P.
, and
Sauret
,
E.
,
2012
, “
Preliminary Design and Performance Estimation of Radial Inflow Turbines: An Automated Approach
,”
ASME J. Fluids Eng.
,
134
(
3
), p.
031102
.10.1115/1.4006174
15.
Yang
,
W.
, and
Xiao
,
R.
,
2013
, “
Multiobjective Optimization Design of a Pump–Turbine Impeller Based on an Inverse Design Using a Combination Optimization Strategy
,”
ASME J. Fluids Eng.
,
136
(
1
), p.
014501
.10.1115/1.4025454
16.
Ruprecht
,
A.
,
Eisinger
,
R.
,
Göde
,
E.
, and
Rainer
,
D.
,
1999
, “
Virtual Numerical Test Bed for Intuitive Design of Hydro Turbine Components
,”
Hydropower Into the Next Century
,
Gmunden
,
Austria
.
17.
Madsen
,
J.
,
Shyy
,
W.
, and
Haftka
,
R.
,
2000
, “
Response Surface Techniques for Diffuser Shape Optimization
,”
AIAA J.
,
38
(
9
), pp.
1512
1518
.10.2514/2.1160
18.
Eisinger
,
R.
, and
Ruprecht
,
A.
,
2002
, “
Automatic Shape Optimisation of Hydro Turbine Components Based on CFD
,”
TASK Q.
,
6
(
1
), pp.
101
111
.
19.
Ruprecht
,
A.
,
Eisinger
,
R.
, and
Göde
,
E.
,
2000
, “
Innovative Design Environments for Hydro Turbine Components
,” HYDRO, Bern.
20.
Lindgren
,
M.
,
2002
, “
Automatic Shape Optimization of Hydropower Flows: The Draft Tube
,” Master’s thesis,
Luleä University of Technology
,
Luleä, Sweden
.
21.
Puente
,
L.
,
Reggio
,
M.
, and
Guibault
,
F.
,
2003
, “
Automatic Shape Optimization of a Hydraulic Turbine Draft Tube
,”
International Conference
,
CFD2003
,
Vancouver, BC
, Vol.
28
.
22.
Marjavaara
,
D.
, and
Lundström
,
T.
,
2004
, “
Shape Optimization of a Hydropower Draft Tube
,”
22nd IAHR Symposium on Hydraulic Machinery and Systems. Design Methods Turbines
,
Stockholm
,
Sweden
, Paper No. A03-2.
23.
Marjavaara
,
D.
, and
Lundström
,
T.
,
2006
, “
Redesign of a Sharp Heel Draft Tube by a Validated CFD-Optimization
,”
Int. J. Numer. Methods Fluids
,
50
(
8
), pp.
911
924
.10.1002/fld.1085
24.
Marjavaara
,
D.
,
Lundström
,
S.
,
Goel
,
T.
,
Mack
,
Y.
, and
Shyy
,
W.
,
2007
, “
Hydraulic Turbine Diffuser Shape Optimization by Multiple Surrogate Model Approximations of Pareto Fronts
,”
ASME J. Fluids Eng.
,
129
(
9
), pp.
1228
1240
.10.1115/1.2754324
25.
Faler
,
J.
, and
Leibovich
,
S.
,
1977
, “
Disrupted States of Vortex Flow and Vortex Breakdown
,”
Phys. Fluids
,
20
(
9
), pp.
1385
1400
.10.1063/1.862033
26.
Susan-Resiga
,
R.
,
Ciocan
,
G.
,
Anton
,
I.
, and
Avellan
,
F.
,
2006
, “
Analysis of the Swirling Flow Downstream a Francis Turbine Runner
,”
ASME J. Fluids Eng.
,
128
(
1
), pp.
177
189
.10.1115/1.2137341
27.
Susan-Resiga
,
R.
,
Muntean
,
S.
,
Hasmatuchi
,
V.
,
Anton
,
I.
, and
Avellan
,
F.
,
2010
, “
Analysis and Prevention of Vortex Breakdown in the Simplified Discharge Cone of a Francis Turbine
,”
ASME J. Fluids Eng.
,
132
(
5
), p.
051102
.10.1115/1.4001486
28.
Gagnon
,
J.
,
Iliescu
,
M.
,
Ciocan
,
G.
, and
Deschênes
,
C.
,
2008
, “
Experimental Investigation of Runner Outlet Flow in Axial Turbine With LDV and Stereoscopic PIV
,”
24th IAHR Symposium on Hydraulic Machinery and Systems
,
Foz do Iguassu
,
Brazil
, October, pp.
27
31
.
29.
Gagnon
,
J.-M.
,
Aeschlimann
,
V.
,
Houde
,
S.
,
Flemming
,
F.
,
Coulson
,
S.
, and
Deschênes
,
C.
,
2012
, “
Experimental Investigation of Draft Tube Inlet Velocity Field of a Propeller Turbine
,”
ASME J. Fluids Eng.
,
134
(
10
), p.
101102
.10.1115/1.4007523
30.
Muntean
,
S.
,
Ciocan
,
T.
,
Susan-Resiga
,
R.
,
Cervantes
,
M.
, and
Nilsson
,
H.
,
2012
, “
Mathematical, Numerical and Experimental Analysis of the Swirling Flow at a Kaplan Runner Outlet
,” Earth and Environmental Science (IOP Conference Series), Vol.
15
,
IOP Publishing
, Philadelphia, p.
032001
.
31.
Susan-Resiga
,
R.
,
Muntean
,
S.
,
Avellan
,
F.
, and
Anton
,
I.
,
2011
, “
Mathematical Modelling of Swirling Flow in Hydraulic Turbines for the Full Operating Range
,”
Appl. Math. Modell.
,
35
(
10
), pp.
4759
4773
.10.1016/j.apm.2011.03.052
32.
Susan-Resiga
,
R.
,
Muntean
,
S.
,
Ciocan
,
T.
,
Joubarne
,
E.
,
Leroy
,
P.
, and
Bornard
,
L.
,
2012
, “
Influence of the Velocity Field at the Inlet of a Francis Turbine Draft Tube on Performance Over an Operating Range
,” Earth and Environmental Science (IOP Conference Series), Vol.
15
,
IOP Publishing
, Philadelphia, p.
032008
.
33.
Fluent, Inc.
,
2005
, FLUENT 6.2.16, User’s Guide.
34.
Mulu
,
B.
,
Cervantes
,
M. J.
,
Vu
,
T. C.
,
Devals
,
C.
, and
Guibault
,
F.
,
2011
, “
Effects of Inlet Boundary Conditions on Kaplan Draft Tube Simulation Accuracy
,”
HYDRO
,
Prague
, Czech Republic.
35.
Vu
,
T. C.
,
Devals
,
C.
,
Zhang
,
Y.
,
Nennemann
,
B.
, and
Guibault
,
F.
,
2011
, “
Steady and Unsteady Flow Computation in an Elbow Draft Tube With Experimental Validation
,”
Int. J. Fluid Mach. Syst.
,
4
(
1
), pp.
85
96
.10.5293/IJFMS.2011.4.1.085
36.
isight
,
1994
, isight 9.0.1, Engineous Software, Inc.
37.
gambit
,
2007
, gambit 2.4, FLUENT, Inc.’s Products.
38.
matlab
,
2005
, matlab 7.1.0.183 (R14), The MathWorks, Inc.
39.
Susan-Resiga
,
R.
,
Avellan
,
F.
,
Ciocan
,
G.
,
Muntean
,
S.
, and
Anton
,
I.
,
2005
, “
Mathematical and Numerical Modeling of Swirling Flow in Francis Turbine Draft Tube Cone
,”
Sci. Bull. “Politehnica” University of Timişoara Trans. Mech.
,
50
(
64
), pp.
1
16
.
40.
Muntean
,
S.
,
Susan-Resiga
,
R.
,
Bernard
,
S.
, and
Anton
,
I.
,
2004
, “
3D Turbulent Flow Analysis of the GAMM Francis Turbine for Variable Discharge
,”
22nd IAHR Symposium on Hydraulic Machinery and Systems
,
Stockholm
,
Sweden
.
41.
Kim
,
J.-Y.
,
Ghajar
,
A. J.
,
Tang
,
C.
, and
Foutch
,
G. L.
,
2005
, “
Comparison of Near-Wall Treatment Methods for High Reynolds Number Backward-Facing Step Flow
,”
Int. J. Comput. Fluid Dyn.
,
19
(
7
), pp.
493
500
.10.1080/10618560500502519
42.
Cheng
,
N.-S.
,
2007
, “
Power-Law Index for Velocity Profiles in Open Channel Flows
,”
Adv. Water Resour.
,
30
(
8
), pp.
1775
1784
.10.1016/j.advwatres.2007.02.001
43.
Page
,
M.
, and
Giroux
,
A.
,
2001
, “
Turbulent Flow Computations in Turbine 99 Draft Tube With CFX-TASC Flow, FIDAP and FINE/Turbo
,”
Turbine 99: The 2nd ERCOFTAC Workshop on Draft Tube Flow
,
Vattenfall Utveckling AB, Älvkarleby
,
Sweden
.
44.
Cervantes
,
M.
, and
Gustavsson
,
H.
,
2007
, “
On the Use of the Squire-Long Equation to Estimate Radial Velocities in Swirling Flows
,”
ASME J. Fluids Eng.
,
129
(
2
), pp.
209
217
.10.1115/1.2409331
45.
Mauri
,
S.
,
Kueny
,
J.
, and
Avellan
,
F.
,
2002
, “
Flow Simulation in an Elbow Diffuser: Verification and Validation
,”
21st IAHR Symposium on Hydraulic Machinery and Systems
,
Lausanne
, pp.
213
240
.
46.
Galván
,
S.
,
Reggio
,
M.
, and
Guibault
,
F.
,
2011
, “
Assessment Study of k-ε Turbulence Models and Near-Wall Modeling for Steady State Swirling Flow Analysis in Draft Tube Using fluent
,”
Eng. Appl. Comput. Fluid Mech.
,
5
(
4
), pp.
459
478
.
47.
Launder
,
B.
, and
Spalding
,
D.
,
1974
, “
The Numerical Computational of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(2), pp.
269
289
.10.1016/0045-7825(74)90029-2
48.
Galván
,
S.
,
2007
, “
Optimization of the Inlet Velocity Profile of the Turbine 99 Draft Tube
,” Ph.D. thesis,
École Polytechnique de Montréal, QC
,
Canada
.
49.
Cervantes
,
M.
, and
Engström
,
F.
,
2004
, “
Factorial Design Applied to CFD
,”
ASME J. Fluids Eng.
,
126
(
5
), pp.
791
798
.10.1115/1.1792277
50.
Galván
,
S.
,
Rubio
,
C.
,
Pacheco
,
J.
,
Mendoza
,
C.
, and
Toledo
,
M.
,
2013
, “
Optimization Methodology Assessment for the Inlet Velocity Profile of a Hydraulic Turbine Draft Tube. Part I: Computer Optimization Techniques
,”
J. Global Optim.
,
55
(
1
), pp.
53
72
.10.1007/s10898-012-9946-8
51.
Shárán
,
V.
,
1976
, “
An Exponential Investigation of the Behaviour of Conical Diffusers in Turbulent Flow
,”
J. Appl. Math. Phys., ZAMP
,
27
(4), pp.
447
462
.10.1007/BF01594901
52.
Senoo
,
Y.
,
Kawaguchi
,
N.
, and
Nagata
,
T.
,
1978
, “
Swirl Flow in Conical Diffusers
,”
Bull. JSME
,
21
(
151
), pp.
112
119
.10.1299/jsme1958.21.112
You do not currently have access to this content.