Clearance always exists between the rotating impeller shrouds and the stationary casing covers in shrouded centrifugal pumps, which affects the pump internal flow and performance. Model tests were conducted for a shrouded centrifugal pump with back blades on the front shroud, and the performance parameters were obtained for three different impeller axial positions. Adjusting the impeller axial position can change the axial size of both the front and back clearances simultaneously. The results show that a tiny variation of the axial clearance size can substantially change the pump performance. A large front clearance reduces the pump efficiency and head with little change in the shaft power. Numerical simulations for a wide range of operating conditions for the three models with different impeller axial positions using the Reynolds-Averaged Navier–Stokes (RANS) with shear stress transport (SST) k–ω turbulence model agree well with the experimental results. The numerical results show how the clearance flow interfere with the main flow as the axial clearance is varied. The change in the pump hydraulic efficiency, volumetric efficiency, and mechanical efficiency was analyzed for various clearances. The hydraulic efficiency is the lowest one of the three kinds of efficiency and changes dramatically as the flow rate increases; thus, the hydraulic efficiency plays a decisive role in the pump performance. The volumetric efficiency is most sensitive to the axial clearance, which obviously decreases as the front clearance is increased. Therefore, the volumetric efficiency is the key factor for the change of the gross efficiency as the axial clearance changes. The mechanical loss varies little with changes in both axial clearance and flow rate so the mechanical efficiency can be regarded as a constant. The effect of axial clearances on the efficiency of shrouded centrifugal pumps should be considered to enable more efficient designs.

References

References
1.
Gülich
,
J. F.
,
2008
,
Centrifugal Pumps
,
Springer
,
Berlin
.
2.
Gülich
,
J. F.
,
2003
, “
Disk Friction Losses of Closed Turbomachine Impellers
,”
Forsch. Ingenieurwes.
,
68
(
2
), pp.
87
95
.10.1007/s10010-003-0111-x
3.
Kaupert
,
K. A.
, and
Staubli
,
T.
,
1999
, “
The Unsteady Pressure Field in a High Specific Speed Centrifugal Pump Impeller—Part I: Influence of the Volute
,”
ASME J. Fluids Eng.
,
121
(
3
), pp.
621
626
.10.1115/1.2823514
4.
Pedersen
,
N.
,
Larsen
,
P. S.
, and
Jacobsen
,
C. B.
,
2003
, “
Flow in a Centrifugal Pump Impeller at Design and Off-Design Conditions—Part I: Particle Image Velocimetry (PIV) and Laser Doppler Velocimetry (LDV) Measurements
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
61
72
.10.1115/1.1524585
5.
González
,
J.
, and
Santolaria
,
C.
,
2006
, “
Unsteady Flow Structure and Global Variables in a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
128
(
5
), pp.
937
946
.10.1115/1.2234782
6.
Liu
,
H.
,
Wang
,
K.
,
Yuan
,
S.
,
Tan
,
M.
,
Wang
,
Y.
, and
Dong
,
L.
,
2013
, “
Multicondition Optimization and Experimental Measurements of a Double-Blade Centrifugal Pump Impeller
,”
ASME J. Fluids Eng.
,
135
(
1
), p.
011103
.10.1115/1.4023077
7.
Stel
,
H.
,
Amaral
,
G. D. L.
,
Negrao
,
C. O. R.
,
Chiva
,
S.
,
Estevam
,
V.
, and
Morales
,
R. E. M.
,
2013
, “
Numerical Analysis of the Fluid Flow in the First Stage of a Two-Stage Centrifugal Pump With a Vaned Diffuser
,”
ASME J. Fluids Eng.
,
135
(
7
), p.
071104
.10.1115/1.4023956
8.
Gao
,
Z.
,
Zhu
,
W.
,
Lu
,
L.
,
Deng
,
J.
,
Zhang
,
J.
, and
Wang
,
F.
,
2014
, “
Numerical and Experimental Study of Unsteady Flow in a Large Centrifugal Pump With Stay Vanes
,”
ASME J. Fluids Eng.
,
136
(
7
), p.
071101
.10.1115/1.4026477
9.
Pei
,
J.
,
Yuan
,
S.
,
Benra
,
F. K.
, and
Dohmen
,
H. S.
,
2012
, “
Numerical Prediction of Unsteady Pressure Field Within the Whole Flow Passage of a Radial Single-Blade Pump
,”
ASME J. Fluids Eng.
,
134
(
10
), p.
101103
.10.1115/1.4007382
10.
Daily
,
J. W.
, and
Nece
,
R. E.
,
1960
, “
Chamber Dimension Effects on Induced Flow and Frictional Resistance of Enclosed Rotating Disks
,”
ASME J. Basic Eng.
,
82
(
1
), pp.
217
230
.10.1115/1.3662532
11.
Launder
,
B.
,
Poncet
,
S.
, and
Serre
,
E.
,
2010
, “
Laminar, Transitional, and Turbulent Flows in Rotor–Stator Cavities
,”
Ann. Rev. Fluid Mech.
,
42
(
1
), pp.
229
248
.10.1146/annurev-fluid-121108-145514
12.
Piesche
,
M.
,
1989
, “
Investigation of the Flow in the Impeller-Side Space of Rotary Pumps With Superimposed Throughflow for the Determination of Axial Force and Frictional Torque
,”
Acta Mech.
,
78
(3-4), pp.
175
189
.10.1007/BF01179215
13.
Will
,
B. C.
,
Benra
,
F. K.
, and
Dohmen
,
H. J.
,
2012
, “
Investigation of the Flow in the Impeller Side Clearances of a Centrifugal Pump With Volute Casing
,”
J. Therm. Sci.
,
21
(
3
), pp.
197
208
.10.1007/s11630-012-0536-3
14.
Xia
,
P.
,
Liu
,
S.
,
Wu
,
Y.
, and
Zhang
,
L.
,
2005
, “
Study on Flow Field of Impeller Tip Clearance in the Double Suction Pump
,”
ASME
Paper No. FEDSM2005-77409.10.1115/FEDSM2005-77409
15.
Chua
,
L. P.
,
Song
,
G.
,
Yu
,
S. C. M.
, and
Tau
,
M. L.
,
2005
, “
Computational Fluid Dynamics of Gap Flow in a Biocentrifugal Blood Pump
,”
Artif. Organs
,
29
(
8
), pp.
620
628
.10.1111/j.1525-1594.2005.29099.x
16.
Chan
,
W. K.
, and
Wong
,
Y. W.
,
2006
, “
A Review of Leakage Flow in Centrifugal Blood Pumps
,”
Artif. Organs
,
30
(
5
), pp.
354
359
.10.1111/j.1525-1594.2006.00225.x
17.
Teo
,
J. B.
,
Chan
,
W. K.
, and
Wong
,
Y. W.
,
2010
, “
Prediction of Leakage Flow in a Shrouded Centrifugal Blood Pump
,”
Artif. Organs
,
34
(
9
), pp.
788
791
.10.1111/j.1525-1594.2010.01090.x
18.
Wu
,
D.
,
Yang
,
S.
,
Xu
,
B. J.
,
Liu
,
Q.
,
Wu
,
P.
, and
Wang
,
L.
,
2014
, “
Investigation of CFD Calculation Method of a Centrifugal Pump With Unshrouded Impeller
,”
Chin. J. Mech. Eng.
,
27
(
2
), pp.
376
384
.10.3901/CJME.2014.02.376
19.
Engeda
,
A.
,
1995
, “
Correlation and Prediction of Efficiency of Centrifugal Pumps Due to Tip Clearance Effects
,”
Proc. Inst. Mech. Eng., Part A
,
209
(
2
), pp.
111
114
.10.1243/PIME_PROC_1995_209_021_02
20.
Shukla
,
S. N.
, and
Kshirsagar
,
J.
,
2007
, “
Numerical Simulation of Tip Clearance Flow in Semi-Open Impeller Pump
,”
ASME
Paper No. FEDSM2007-37355.10.1115/FEDSM2007-37355
21.
Park
,
S. H.
,
2009
, “
The Effects of the Back Clearance Size and the Balance Holes on the Back Clearance Flow of the Centrifugal Pump With Semi-Open Impeller
,” Ph.D. thesis, Texas A&M University, College Station, TX.
22.
Park
,
S. H.
, and
Morrison
,
G. L.
,
2009
, “
Analysis of the Flow Between the Impeller and Pump Casing Back Face for a Centrifugal Pump
,”
ASME
Paper No. FEDSM2009-78185.10.1115/FEDSM2009-78185
23.
Zhu
,
B.
,
Chen
,
H. X.
,
Wei
,
Q.
, and
Zhang
,
R.
,
2012
, “
The Analysis of Unsteady Characteristics in the Low Specific Speed Centrifugal Pump With Drainage Gaps
,”
Conf. Ser.: Earth Environ. Sci.
,
15
(
3
), p.
032049
.10.1088/1755-1315/15/3/032049
24.
Li
,
W. G.
,
2012
, “
An Experimental Study on the Effect of Oil Viscosity and Wear-Ring Clearance on the Performance of an Industrial Centrifugal Pump
,”
ASME J. Fluids Eng.
,
134
(
1
), p.
014501
.10.1115/1.4005671
25.
Li
,
W. G.
,
2013
, “
Model of Flow in the Side Chambers of an Industrial Centrifugal Pump for Delivering Viscous Oil
,”
ASME J. Fluids Eng.
,
135
(
5
),
p
. 051201.10.1115/1.4023664
26.
Zhao
,
W. G.
,
Li
,
Y. B.
,
Wang
,
X. Y.
,
Sun
,
J. P.
, and
Wu
,
G. X.
,
2012
, “
Research on the Effect of Wear-Ring Clearance to the Performance of Centrifugal Pump
,”
Conf. Ser.: Earth Environ. Sci.
,
15
(
7
), p.
072018
.10.1088/1755-1315/15/7/072018
27.
Zhao
,
W. G.
,
He
,
M. Y.
,
Qi
,
C. X.
, and
Li
,
Y. B.
,
2013
, “
Research on the Effect of Wear-Ring Clearances to the Axial and Radial Force of a Centrifugal Pump
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
52
(
7
), p.
072015
.10.1088/1757-899X/52/7/072015
28.
Uy
,
R. V.
,
Bircumshwa
,
B. L.
, and
Brennen
,
C. E.
,
1998
, “
Rotordynamic Forces From Discharge-to-Suction Leakage Flows in Centrifugal Pumps: Effects of Geometry
,”
JSME Int. Conf. Fluid Eng.
,
41
(
1
), pp.
208
213
.10.1299/jsmeb.41.208
29.
Oh
,
H. W.
,
Yoon
,
E. S.
, and
Chung
,
M. K.
,
1997
, “
An Optimum Set of Loss Models for Performance Prediction of Centrifugal Compressors
,”
Proc. Inst. Mech. Eng., Part A
,
211
(
4
), pp.
331
338
.10.1243/0957650971537231
You do not currently have access to this content.