Earlier studies on the circular hydraulic jump have shown that the radial position of the hydraulic jump depends on the flow rate, gravity, and fluid viscosity. In this study, results from numerical simulations and experiments on circular hydraulic jumps are presented and through analysis, it is shown that the momentum flux is an additional controlling parameter in determining the jump location. Apart from the jump location, the variation of the film thickness with flow parameters is also obtained from experiments and numerical simulations. By including the dependence of the momentum flux and dissipation in the film along with other controlling parameters, the data on jump radius obtained from experiments and simulation (including the present study) covering a wide range of parameters reported in the literature can be collapsed on to a single curve.

References

References
1.
Rayleigh
,
L.
,
1914
, “
On the Theory of Long Waves and Bores
,”
Proc. R. Soc. London A.
,
90
, pp.
324
328
.10.1098/rspa.1914.0055
2.
Tani
,
I.
,
1949
, “
Water Jump in the Boundary Layer
,”
J. Phys. Soc. Jpn.
,
4
(
4
), pp.
212
215
.10.1143/JPSJ.4.212
3.
Bohr
,
T.
,
Dimon
,
P.
, and
Putkaradze
,
V.
,
1993
, “
Shallow-Water Approach to the Circular Hydraulic Jump
,”
J. Fluid Mech.
,
254
, pp.
635
648
.10.1017/S0022112093002289
4.
Godwin
,
R. P.
,
1993
, “
The Hydraulic Jump (“Shocks” and Viscous Flow in the Kitchen Sink)
,”
Am. J. Phys.
,
61
(
9
), pp.
829
832
.10.1119/1.17413
5.
Blackford
,
B. L.
,
1996
, “
The Hydraulic Jump in Radially Spreading Flow: A New Model and New Experimental Data
,”
Am. J. Phys.
,
64
(
2
), pp.
164
169
.10.1119/1.18137
6.
Brechet
,
Y.
, and
Neda
,
Z.
,
1999
, “
On the Circular Hydraulic Jump
,”
Am. J. Phys.
,
67
(
8
), pp.
723
731
.10.1119/1.19360
7.
Higuera
,
F. J.
,
1994
, “
The Hydraulic Jump in a Viscous Laminar Flow
,”
J. Fluid Mech.
,
274
, pp.
69
92
.10.1017/S0022112094002041
8.
Higuera
,
F. J.
,
1997
, “
The Circular Hydraulic Jump
,”
Phys. Fluids
,
9
(
5
), pp.
1476
1478
.10.1063/1.869272
9.
Watson
,
E. J.
,
1964
, “
The Radial Spread of a Liquid Jet Over a Horizontal Plane
,”
J. Fluid Mech.
,
20
(
3
), pp.
481
499
.10.1017/S0022112064001367
10.
Ellegaard
,
C.
,
Hansen
,
A. E.
,
Haaning
,
A.
,
Hansen
,
K.
,
Marcussen
,
A.
,
Bohr
,
T.
,
Hansen
,
J. L.
, and
Watanabe
,
S.
,
1998
, “
Creating Corners in Kitchen Sinks
,”
Nature
,
392
, pp.
767
768
.10.1038/33820
11.
Singha
,
S. B.
,
Bhattacharya
,
J. K.
, and
Ray
,
A. K.
,
2005
, “
Hydraulic Jump in One-Dimensional Flow
,”
Eur. J. Phys. B
,
48
(
3
), pp.
417
426
.10.1140/epjb/e2005-00404-0
12.
Hansen
,
S. H.
,
Horluck
,
S.
,
Zaunner
,
D.
,
Dimon
,
P.
,
Ellegaard
,
C.
, and
Creagh
,
S. C.
,
1997
, “
Geometric Orbits of Surface Waves From a Circular Hydraulic Jump
,”
Phys. Rev. E
,
55
(
6
), pp.
7048
7061
.10.1103/PhysRevE.55.7048
13.
Rojas
,
N.
,
Argentina
,
M.
, and
Tirapegui
,
E.
,
2013
, “
A Progressive Correction to the Circular Hydraulic Jump Scaling
,”
Phys. Fluids
,
25
(
4
), p.
042105
.10.1063/1.4801836
14.
Kate
,
R. P.
,
Das
,
P. K.
, and
Chakraborty
,
S.
,
2008
, “
An Investigation on Non-Circular Hydraulic Jumps Formed Due to Obliquely Impinging Circular Liquid Jets
,”
Exp. Therm. Fluid Sci.
,
32
(
8
), pp.
1429
1439
.10.1016/j.expthermflusci.2008.03.001
15.
Kate
,
R. P.
,
Das
,
P. K.
, and
Chakraborty
,
S.
,
2009
, “
Effect of Jet Obliquity in Hydraulic Jumps Formed by Impinging Circular Liquid Jets on a Moving Horizontal Plate
,”
ASME J. Fluids Eng.
,
131
(
3
), p.
034502
.10.1115/1.3059583
16.
Naraghi
,
M. N.
,
Moallemi
,
M. K.
,
Naraghi
,
M. H. N.
, and
Kumar
,
S.
,
1999
, “
Experimental Modeling of Circular Hydraulic Jump by the Impingement of a Water Column on a Horizontal Disk
,”
ASME J. Fluids Eng.
,
121
(
1
), pp.
86
92
.10.1115/1.2822017
17.
Dasgupta
,
R.
, and
Govindarajan
,
R.
,
2010
, “
Non-Similar Solutions of the Viscous Shallow Water Equations Governing Weak Hydraulic Jumps
,”
Phys. Fluids
,
22
(11), p.
112108
.10.1063/1.3488009
18.
Popinet
,
S.
,
2003
, “
gerris: A Tree-based Adaptive Solver for the Incompressible Euler Equations in Complex Geometries
,”
J. Comput. Phys.
,
190
(
2
), pp.
572
600
.10.1016/S0021-9991(03)00298-5
19.
Popinet
,
S.
,
2009
, “
An Accurate Adaptive Solver for Surface-Tension-Driven Interfacial Flows
,”
J. Comput. Phys.
,
228
(
16
), pp.
5838
5866
.10.1016/j.jcp.2009.04.042
20.
Bush
,
J. W. M.
, and
Aristoff
,
J.
,
2003
, “
The Influence of Surface Tension on the Circular Hydraulic Jump
,”
J. Fluid Mech.
,
489
, pp.
229
238
.10.1017/S0022112003005159
21.
Dasgupta
,
R.
,
2010
, “
A Computational and Semi-Analytical Study of Laminar, Standing Hydraulic Jumps
,” Ph.D. thesis, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.
22.
Wolfram Research, Inc.
,
2008
, Mathematica, Version 6.0, Champaign, IL.
23.
Fard
,
M. P.
,
Teymourtash
,
A. R.
, and
Khavari
,
M.
,
2011
, “
Numerical Study of Circular Hydraulic Jump Using Volume-of-Fluid Method
,”
ASME J. Fluids Eng.
,
133
(
1
), p.
011401
.10.1115/1.4003307
24.
Rao
,
A.
, and
Arakeri
,
J.
,
2001
, “
Wave Structure in the Radial Film Flow With a Circular Hydraulic Jump
,”
Exp. Fluids
,
31
(
5
), pp.
542
549
.10.1007/s003480100328
25.
MATLAB
,
2008
,
Version 7.6.0 (R2008a)
,
The MathWorks
,
Natick, MA
.
26.
Kasa
,
I.
,
1976
, “
A Circle Fitting Procedure and Its Error Analysis
,”
IEEE Trans. Instrum. Meas.
,
25
(
1
), pp.
8
14
.10.1109/TIM.1976.6312298
You do not currently have access to this content.