Fluid stiction may significantly influence the dynamic behavior when attempting to quickly separate two plates in close contact. The liquid fluid film, filling the gap between the plates, experiences a pressure drop resulting from an increasing distance, and cavitation may appear if sufficient separation speed and low plate distance are present. In the case of small initial plate separation, fluid tension is known to develop and the stiction force may exceed the maximum stiction force calculated by assuming strictly positive pressures in the fluid film. In this paper, a model for simulating the time dependent fluid stiction phenomenon, including a fluid tensile strength and cavitation effects, is proposed. The model is based on Reynolds theory, and the pressure distribution in the liquid zone is solved analytically for each time step, leading to a computationally efficient model without the need for finite element/volume methods. The considered geometry is two long parallel plates submerged in liquid, as present in many valve applications. The model is compared to experimental measurements, and it is found that the model is able to predict the stiction effect with reasonable accuracy given that proper selections of liquid tensile strength and initial plate distance are made.

References

References
1.
Giacomelli
,
E.
, and
Giorgetti
,
M.
,
1974
, “
Evaluation of Oil Stiction in Ring Valves
,”
International Compressor Engineering Conference
, pp.
167
170
.
2.
Bauer
,
F.
,
1990
, “
The Influence of Liquids on Compressor Valves
,”
International Compressor Conference
, pp.
647
653
.
3.
Khalifa
,
H. E.
, and
Liu
,
X.
,
1998
, “
Analysis of Stiction Effect on the Dynamics of Compressor Suction Valve
,”
International Compressor Engineering Conference
, pp.
87
92
.
4.
Pizarro-Recabarren
,
R. A.
,
Barbosa
,
J. R.
, and
Deschamps
,
C. J.
,
2013
, “
Modeling the Stiction Effect in Automatic Compressor Valves
,”
Int. J. Refrig.
,
36
(
7
), pp.
1916
1924
.10.1016/j.ijrefrig.2013.09.042
5.
Budgett
,
H. M.
,
1911
, “
The Adherence of Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
,
86
(583), pp.
25
35
.10.1098/rspa.1911.0077
6.
Poivet
,
S.
,
Nallet
,
F.
,
Gay
,
C.
, and
Fabre
,
P.
,
2003
, “
Cavitation-Induced Force Transition in Confined Viscous Liquids Under Traction
,”
Europhys. Lett.
,
62
(
2
), pp.
244
250
.10.1209/epl/i2003-00352-3
7.
Poivet
,
S.
,
Nallet
,
F.
,
Gay
,
C.
,
Teisseire
,
J.
, and
Fabre
,
P.
,
2004
, “
Force Response of a Viscous Liquid in a Probe-Tack Geometry: Fingering Versus Cavitation
,”
Eur. Phys. J. E
,
15
(
2
), pp.
97
116
.10.1140/epje/i2004-10040-2
8.
Lindner
,
A.
,
Derks
,
D.
, and
Shelley
,
M. J.
,
2005
, “
Stretch Flow of Thin Layers of Newtonian Liquids Fingering Patterns and Lifting Forces
,”
Phys. Fluids
,
17
(7), p.
072107
.10.1063/1.1939927
9.
Sedgewick
,
S. A.
, and
Trevena
,
D. H.
,
1976
, “
Limiting Negative Pressure of Water Under Dynamic Stressing
,”
J. Phys. D
,
9
(14), pp.
1983
1990
.10.1088/0022-3727/9/14/008
10.
Brennen
,
C. E.
,
1995
,
Cavitation and Bubble Dynamics
,
Oxford University Press
,
Oxford
.
11.
Braun
,
M. J.
, and
Hannon
,
W. M.
,
2010
, “
Cavitation Formation and Modelling for Fluid Film Bearings: A Review
,”
J. Eng. Tribol.
,
224
(9), pp.
839
863
.10.1243/13506501JET772
12.
Briggs
,
L. J.
,
1950
, “
Limiting Negative Pressure of Water
,”
J. Appl. Phys.
,
21
(
7
), pp.
721
722
.10.1063/1.1699741
13.
Szeri
,
A. Z.
,
2011
,
Fluid Film Lubrication
,
Cambridge University Press
,
Cambridge
.10.1017/CBO9780511782022
14.
Ma
,
J.
,
Hsiao
,
C.-T.
, and
Chahine
,
G. L.
,
2015
, “
Euler–Lagrange Simulations of Bubble Cloud Dynamics Near a Wall
,”
ASME J. Fluids Eng.
,
137
(
4
), p.
041301
.10.1115/1.4028853
15.
Jian
,
W.
,
Petkovsek
,
M.
,
Houlin
,
L.
,
Sirok
,
B.
, and
Dular
,
M.
,
2015
, “
Combined Numerical and Experimental Investigation of the Cavitation Erosion Process
,”
ASME J. Fluids Eng.
,
137
(5), p.
051302
.10.1115/1.4029533
16.
Resch
,
M.
, and
Scheidl
,
R.
,
2013
, “
A Model for Fluid Stiction of Quick Separating Circular Plates
,”
Mech. Eng. Sci.
,
288
(
9
), pp.
1540
1556
.
17.
Roemer
,
D. B.
,
Johansen
,
P.
,
Pedersen
,
H. C.
, and
Andersen
,
T. O.
,
2014
, “
Oil Stiction in Fast Switching Annular Seat Valves for Digital Displacement Fluid Power Machines
,”
ASME
Paper No. ESDA2014-20443.10.1115/ESDA2014-20443
18.
Scheidl
,
R.
, and
Gradl
,
C.
,
2013
, “
An Oil Stiction Model for Flat Armature Solenoid Switching Valves
,”
ASME
Paper No. FPMC2013-4467.10.1115/FPMC2013-4467
19.
Sun
,
D. C.
, and
Brewe
,
D. E.
,
1991
, “
A High Speed Photography Study of Cavitation in a Dynamically Loaded Journal Bearing
,”
ASME J. Tribol.
,
113
(
2
), pp.
287
292
.10.1115/1.2920618
20.
Sun
,
D. C.
, and
Brewe
,
D. E.
,
1992
, “
Two Reference Time Scales for Studying the Dynamic Cavitation of Liquid Films
,”
ASME J. Tribol.
,
114
(
3
), pp.
612
615
.10.1115/1.2920925
21.
Hori
,
Y.
,
2006
,
Hydrodynamic Lubrication
,
Springer
,
Tokyo
.
22.
Roemer
,
D. B.
,
Johansen
,
P.
,
Pedersen
,
H. C.
, and
Andersen
,
T. O.
,
2013
, “
Design and Modeling of Fast Switching Efficient Seat Valves for Digital Displacement Pumps
,”
Trans. Can. Soc. Mech. Eng.
,
37
(1), pp.
71
87
.
You do not currently have access to this content.