The ingestion of a vortex by an aero-engine is potentially an area of concern for current and future aircraft-engine configurations. However, there are very little experimental data on the characteristics of a streamwise vortex undergoing ingestion through a contracting streamtube. To address this dearth of knowledge, the ingestion of a streamwise vortex has been studied experimentally using stereoscopic particle image velocimetry (stereo PIV). A subscale model of an aircraft intake has been used to generate a contracting capture streamtube, and an isolated streamwise vortex has been generated upstream of the intake using semispan NACA 0012 and delta wing vortex generators (VGs). A range of contraction ratios, vortex Reynolds numbers, and vortex initial conditions have been examined. Measurements on planes perpendicular to the freestream flow show that the vortex undergoes notable levels of intensification through the contraction streamtube. The characteristics of the vortex are dependent on the streamtube contraction level, the initial aerodynamic characteristics of the vortex, and the trajectory that the vortex follows inside the capture streamtube. Results from inviscid, incompressible vortex filament theory have been compared with the experimental data. At relatively low streamtube contraction ratios this theory provides a good estimate of the vortex characteristics. However, at higher contraction levels, there are notable levels of diffusion, which render the vortex less intense than that anticipated from vortex filament theory.

References

References
1.
Green
,
J.
,
2008
, “
Forced Response of a Large Civil Fan Assembly
,”
ASME
Paper No. GT2008-50319.10.1115/GT2008-50319
2.
Motycka
,
D.
,
1975
, “
Ground Vortex–Limit to Engine/Reverser Operation
,”
ASME
Paper No. 75-GT-3.
3.
Mitchell
,
G.
,
1975
, “
Effect of Inlet Ingestion of a Wing Tip Vortex on Compressor Face Flow and Turbojet Stall Margin
,” NASA, Technical Report No. TM X-3246.
4.
SAE International
,
2007
, “
A Methodology for Assessing Inlet Swirl Distortion
,” Aerospace Information Report No. AIR5686.
5.
SAE International
,
2012
, “
Predicting Inlet Dynamic Total-Pressure Distortion—Background and Guidance for CFD Developers
,” Technical Report No. AIR1419B.
6.
Murphy
,
J.
, and
MacManus
,
D.
,
2011
, “
Ground Vortex Aerodynamics Under Crosswind Conditions
,”
Exp. Fluids
,
50
(
1
), pp.
109
124
.10.1007/s00348-010-0902-4
7.
Vunnam
,
K.
, and
Hoover
,
R.
,
2011
, “
Modeling of Inlet Distortion Using a Combined Turbofan and Nacelle
,”
ASME
Paper No. GT2011-46466.10.1115/GT2011-46466
8.
Hall
,
M.
,
1966
, “
The Structure of Concentrated Vortex Cores
,”
Prog. Aerosp. Sci.
,
7
, pp.
53
110
.10.1016/0376-0421(66)90006-6
9.
Saffman
,
P.
,
1995
,
Vortex Dynamics
,
Cambridge University Press
,
Cambridge
.10.1017/CBO9780511624063
10.
Batchelor
,
G.
,
1967
,
An Introduction to Fluid Dynamics
,
Cambridge University Press
,
Cambridge
.
11.
Hall
,
M.
,
1972
, “
Vortex Breakdown
,”
Annu. Rev. Fluid Mech.
,
4
(
1
), pp.
195
217
.10.1146/annurev.fl.04.010172.001211
12.
Gatlin
,
G.
,
Vicroy
,
D.
, and
Carter
,
M.
,
2012
, “
Experimental Investigation of the Low-Speed Aerodynamic Characteristics of a 5.8-Percent Scale Hybrid Wing Body Configuration
,”
AIAA
Paper No. 2012-2669.10.2514/6.2012-2669
13.
Rusak
,
Z.
, and
Meder
,
C.
,
2004
, “
Near-Critical Swirling Flow in a Slightly Contracting Pipe
,”
AIAA J.
,
42
(
11
), pp.
2284
2293
.10.2514/1.7850
14.
Leclaire
,
B.
,
Jacquin
,
L.
, and
Sipp
,
D.
,
2005
, “
Effects of a Contraction on a Uniformly Rotating Flow
,”
AIAA
Paper No. 2005-4677.10.2514/6.2005-4677
15.
Rusak
,
Z.
,
Bourquard
,
N.
, and
Wang
,
S.
,
2013
, “
Vortex Breakdown in Swirling Flows in Diverging or Contracting Pipes
,”
AIAA
Paper No. 2013-1010.10.2514/6.2013-1010
16.
Garbeff
,
T.
, II
,
Huthmacher
,
R.
,
Tso
,
J.
,
Martin
,
P.
, and
Tung
,
C.
,
2010
, “
An Experimental Survey of a Wing-Tip Vortex in a Contracted Flow
,”
AIAA
Paper No. 2010-4616.10.2514/6.2010-4616
17.
Rott
,
N.
,
1958
, “
On the Viscous Core of a Line Vortex
,”
Z. Angew. Math. Phys.
,
9
(
5–6
), pp.
543
553
.10.1007/BF02424773
18.
Ananthan
,
S.
, and
Leishman
,
J. G.
,
2002
, “
Role of Filament Strain in the Free-Vortex Modeling of Rotor Wakes
,”
58th Annual Forum
,
American Helicopter Society International
,
Montreal, Canada
, June 11–13, Vol.
II
, pp.
2005
2022
.
19.
Ramasamy
,
M.
, and
Leishman
,
J. G.
,
2004
, “
Interdependence of Diffusion and Straining of Helicopter Blade Tip Vortices
,”
J. Aircr.
,
41
(
5
), pp.
1014
1023
.10.2514/1.3364
20.
Bhagwat
,
M.
, and
Leishman
,
J.
,
2002
, “
Generalized Viscous Vortex Model for Application to Free-Vortex Wake and Aeroacoustic Calculations
,”
58th Annual Forum
, Montreal,
American Helicopter Society International
,
Canada
, June 11–13, Vol.
II
, pp.
2042
2057
.
21.
Talwar
,
S.
,
2005
, “
Vortex Effects on Intake Aerodynamics
,” M.Sc. thesis, Cranfield University, Cranfield, UK.
22.
Ramasamy
,
M.
,
Johnson
,
B.
,
Huismann
,
T.
, and
Leishman
,
J.
,
2007
, “
An Improved Method for Estimating Turbulent Vortex Flow Properties From Stereoscopic DPIV Measurements
,”
63rd Annual National Forum
,
American Helicopter Society International
,
Virginia Beach, VA
, May 1–3, pp.
1974
1996
.
23.
Raffel
,
M.
,
Willert
,
C.
,
Werely
,
S.
, and
Kompenhans
,
J.
,
2007
,
Particle Image Velocimetry: A Practical Guide
,
2nd ed.
,
Springer
, Berlin.
24.
Scarano
,
F.
,
2002
, “
Iterative Image Deformation Methods in PIV
,”
Meas. Sci. Technol.
,
13
(
1
), pp.
R1
R19
.10.1088/0957-0233/13/1/201
25.
Ramasamy
,
M.
,
Johnson
,
B.
, and
Leishman
,
J. G.
,
2009
, “
Turbulent Tip Vortex Measurements Using Dual-Plane Stereoscopic Particle Image Velocimetry
,”
AIAA J.
,
47
(
8
), pp.
1826
1840
.10.2514/1.39202
26.
Ramasamy
,
M.
, and
Leishman
,
J.
,
2007
, “
Benchmarking Particle Image Velocimetry With Laser Doppler Velocimetry for Rotor Wake Measurements
,”
AIAA J.
,
45
(
11
), pp.
2622
2633
.10.2514/1.28130
27.
Lee
,
T.
, and
Pereira
,
J.
,
2012
, “
Nature of Wakelike and Jetlike Axial Tip Vortex Flows
,”
J. Aircr.
,
47
(
6
), pp.
1946
1954
.10.2514/1.C000225
28.
Westerweel
,
J.
, and
Scarano
,
F.
,
2005
, “
Universal Outlier Detection for PIV Data
,”
Exp. Fluids
,
39
(
6
), pp.
1096
1100
.10.1007/s00348-005-0016-6
29.
Green
,
S.
,
1995
,
Fluid Vortices
,
Kulwer Academic Publishers
,
Dordrecht, The Netherlands
.
30.
Beresh
,
S.
,
Henfling
,
J.
, and
Spillers
,
R.
,
2010
, “
Meander of a Fin Trailing Vortex and the Origin of Its Turbulence
,”
Exp. Fluids
,
49
(
3
), pp.
599
611
.10.1007/s00348-010-0825-0
31.
Devenport
,
W. J.
,
Rife
,
M. C.
,
Liapis
,
S. I.
, and
Follin
,
G. J.
,
1996
, “
The Structure and Development of a Wing-Tip Vortex
,”
J. Fluid Mech.
,
312
, pp.
67
106
.10.1017/S0022112096001929
32.
Zhou
,
Y.
,
Zhang
,
H.
, and
Whitelaw
,
J.
,
2004
, “
Wing-Tip Vortex Measurement With Particle Image Velocimetry
,”
AIAA
Paper No. 2004-2433.10.2514/6.2004-2433
33.
Burley
,
C. L.
,
Brooks
,
T. F.
,
van der Wall
,
B.
,
Richard
,
H.
,
Raffel
,
M.
,
Beaumier
,
P.
,
Delrieux
,
Y.
,
Lim
,
J. W.
,
Yu
,
Y.
,
Tung
,
C.
, and
Pengel
,
K. M. E.
,
2002
, “
Rotor Wake Vortex Definition—Initial Evaluation of 3-C PIV Results of the HART-II Study
,”
28th European Rotorcraft Forum
,
Bristol, UK
.
34.
Martin
,
P.
,
Pugliese
,
G.
, and
Leishman
,
J.
,
2003
, “
High Resolution Trailing Vortex Measurement in the Wake of a Hovering Rotor
,”
J. Am. Helicopter Soc.
,
48
(
1
), pp.
39
52
.10.4050/JAHS.48.39
35.
Squire
,
H.
,
1965
, “
The Growth of a Vortex in Turbulent Flow
,”
Aeronaut. Q.
,
16
, pp.
302
306
.
36.
Iversen
,
J.
,
1974
, “
Correlation of Turbulent Trailing Vortex Decay Data
,”
J. Aircr.
,
13
(
5
), pp.
338
342
.10.2514/3.44529
37.
Ramasamy
,
M.
, and
Leishman
,
J.
,
2004
, “
A Generalized Model for Transitional Blade Tip Vortices
,”
60th Annual Forum and Technology Display
,
American Helicopter Society International
,
Baltimore, MD
, June 7–10, pp.
1040
1056
.
38.
Keuthe
,
A.
, and
Chow
,
C.
,
1998
,
Foundations of Aerodynamics: Bases of Aerodynamic Design
,
5th ed.
,
Wiley
, New York.
39.
Polhamus
,
E.
,
1966
, “
A Concept of the Vortex Lift of Sharp-Edge Delta Wings Based on a Leading-Edge-Suction Analogy
,” NASA, Technical Note TN D-3767.
40.
Ramaprian
,
B.
, and
Zheng
,
Y.
,
1997
, “
Measurements in the Rollup Region of the Tip Vortex from a Rectangular Wing
,”
AIAA J.
,
35
(
12
), pp.
1837
1843
.10.2514/2.59
41.
Spreiter
,
J.
, and
Sacks
,
A.
,
1951
, “
The Rolling Up of the Trailing Vortex Sheet and Its Effect on the Downwash Behind Wings
,”
J. Aeronaut. Sci.
,
18
, pp.
21
32
.10.2514/8.1830
42.
Ramasamy
,
M.
, and
Leishman
,
J.
,
2005
, “
A Reynolds Number-Based Tip Vortex Model
,”
61st Annual Forum
,
American Helicopter Society International
,
Grapevine, TX
, June 1–3, pp.
1
13
.
43.
Chow
,
J.
,
Zilliac
,
G.
, and
Bradshaw
,
P.
,
1997
, “
Mean and Turbulence Measurements in the Near Field of a Wingtip Vortex
,”
AIAA J.
,
35
(
10
), pp.
1561
1567
.10.2514/2.1
44.
Wang
,
F.
,
Milanovic
,
I.
,
Zaman
,
K.
, and
Povinelli
,
L.
,
2005
, “
A Quantitative Comparison of Delta Wing Vortices in the Near-Wake For Incompressible and Supersonic Free Streams
,”
ASME J. Fluids Eng.
,
127
(
6
), pp.
1071
1084
.10.1115/1.2060732
45.
McAlister
,
K.
, and
Takahashi
,
R.
,
1991
, “
NACA 0015 Wing Pressure and Trailing Vortex Measurements
,” NASA, Technical Paper No. TP-3151.
46.
Birch
,
D.
,
Lee
,
T.
,
Mokhtarian
,
F.
, and
Kafyeke
,
F.
,
2004
, “
Structure and Induced Drag of a Tip Vortex
,”
J. Aircr.
,
41
(
5
), pp.
1138
1145
.10.2514/1.2707
47.
Prandtl
,
L.
,
1933
, “
Attaining a Steady Air Stream in Wind Tunnels
,” NACA, Technical Memorandum TM-726.
48.
Uberoi
,
M. S.
,
1956
, “
Effect of Wind-Tunnel Contraction on Free-Stream Turbulence
,”
J. Aeronaut. Sci.
,
23
(
8
), pp.
754
764
.10.2514/8.3651
49.
Lamb
,
H.
,
1945
,
Hydrodynamics
,
6th ed.
,
Dover
,
New York
.
50.
Kundu
,
P. K.
, and
Cohen
,
I. M.
,
2002
,
Fluid Mechanics
,
Elsevier Science/Academic Press
,
London
.
51.
Han
,
Y.
,
Leishman
,
J.
, and
Coyne
,
A.
,
1997
, “
Measurements of the Velocity and Turbulence Structure of a Rotor Tip Vortex
,”
AIAA J.
,
35
(
3
), pp.
477
485
.10.2514/3.13529
You do not currently have access to this content.