This paper presents both experimental and numerical studies of the statistical properties of turbulent flows at moderate Reynolds number (Reλ = 100) in the context of grid-generated turbulence. In spite of the popularity of passive grids as turbulence generators, their design relies essentially on empirical laws. Here, we propose to test the ability of simple numerical simulations to capture the large scale properties (root-mean-square (rms) velocity, turbulence decay, pressure drop, etc.) of the turbulence downstream a passive grid. With this purpose, experimental measurements are compared with the three-dimensional (3D) Reynolds-Averaged Navier–Stokes (RANS) equations based turbulence model simulations. To better modeling of energy cascade of turbulence, different turbulence models, mesh resolutions, and turbulence model constants, which are determined in accordance with the experimentally measured corresponding values, are used. Both qualitative and quantitative comparisons are made with the experimental data to further assess the accuracy and capability of present numerical techniques for their use in different aerodynamic applications at moderate Re number.

References

References
1.
Kolmogorov
,
A. N.
,
1941
, “
The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers
,”
Dokl. Akad. Nauk SSSR
,
30
, pp.
299
303
.
2.
Landau
,
L.
,
1944
, “
On the Problem of Turbulence
,”
Dokl. Akad. Nauk SSSR
,
44
, pp.
339
342
.
3.
Obukhov
,
1962
, “
Some Specific Features of Atmospheric Turbulence
,”
J. Fluid Mech.
,
13
(
1
), pp.
77
81
.10.1017/S0022112062000506
4.
Parisi
,
G.
,
1985
, “
Fully Developed Turbulence and Intermittency
,”
Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics
,
M.
Ghil
,
R.
Benzi
, and
G.
Parisi
, eds., Soc. Italiana di Fisica, Bologna, Italy, pp.
84
88
.
5.
Arneodo
,
A.
,
2008
, “
Universal Intermittent Properties of Particle Trajectories in Highly Turbulent Flows
,”
Phys. Rev. Lett.
,
100
(
25
), p.
254504
.10.1103/PhysRevLett.100.254504
6.
Arneodo
,
A.
,
1996
, “
Structure Functions in Experimental 3D Turbulence, in Various Flow Configurations, at Reynolds Number Between 30 and 5000
,”
Europhys. Lett.
,
34
(
6
), pp.
411
416
.10.1209/epl/i1996-00472-2
7.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
, New York.10.1017/CBO9780511840531
8.
Batchelor
,
G. K.
,
1953
,
The Theory of Homogeneous Turbulence
, Vol.
20
, Cambridge University Press, New York.
9.
Saffman
,
P. G.
,
2006
, “
The Large-Scale Structure of Homogeneous Turbulence
,”
J. Fluid Mech.
,
27
(
3
), pp.
581
583
.10.1017/S0022112067000552
10.
Krogstad
,
P.-A.
, and
Davidson
,
P. A.
,
2009
, “
Is Grid Turbulence Saffman Turbulence?
,”
J. Fluid Mech.
,
642
, pp.
373
394
.10.1017/S0022112009991807
11.
Llor
,
A.
,
2011
, “
Langevin Equation of Big Structure Dynamics in Turbulence: Landaus Invariant in the Decay of Homogeneous Isotropic Turbulence
,”
Eur. J. Mech. - B/Fluids
,
30
(
5
), pp.
480
504
.10.1016/j.euromechflu.2011.04.009
12.
Comte-Bellott
,
B. G.
, and
Corrsin
,
S.
,
1966
, “
The Use of a Contraction to Improve the Isotropy of Grid-Generated Turbulence
,”
J. Fluid Mech.
,
25
(
4
), pp.
657
682
.10.1017/S0022112066000338
13.
Warhaft
,
Z.
, and
Lumley
,
J. L.
,
1978
, “
An Experimental Study of the Decay of Temperature Fluctuations in Grid-Generated Turbulence
,”
J. Fluid Mech.
,
88
(
4
), pp.
659
684
.10.1017/S0022112078002335
14.
Ishida
,
T.
,
Davidson
,
P. A.
, and
Kaneda
,
Y.
,
2006
, “
On the Decay of Isotropic Turbulence
,”
J. Fluid Mech.
,
564
, pp.
455
475
.10.1017/S0022112006001625
15.
Mordant
,
N.
,
2008
, “
Experimental High Reynolds Number Turbulence With an Active Grid
,”
Am. J. Phys.
,
76
(
12
), pp.
1092
1098
.10.1119/1.2980582
16.
Kang
,
H. S.
,
Chester
,
S.
, and
Meneveau
,
C.
,
2003
, “
Decaying Turbulence in an Active-Grid-Generated Flow and Comparisons With Large-Eddy Simulation
,”
J. Fluid Mech.
,
480
, pp.
129
160
.10.1017/S0022112002003579
17.
Mazzi
,
B.
, and
Vassilicos
,
J. C.
,
2004
, “
Fractal-Generated Turbulence
,”
J. Fluid Mech.
,
502
(
1
), pp.
65
87
.10.1017/S0022112003007249
18.
Seoud
,
R. E.
, and
Vassilicos
,
J. C.
,
2007
, “
Dissipation and Decay of Fractal-Generated Turbulence
,”
Phys. Fluids
,
19
(
10
), pp.
105
108
.10.1063/1.2795211
19.
Hurst
,
D.
, and
Vassilicos
,
J. C.
,
2007
, “
Scalings and Decay of Fractal-Generated Turbulence
,”
Phys. Fluids
,
19
(
3
), p.
035103
.10.1063/1.2676448
20.
Krogstad
,
P.-A.
, and
Davidson
,
P. A.
,
2011
, “
Freely Decaying, Homogeneous Turbulence Generated by Multi-Scale Grids
,”
J. Fluid Mech.
,
680
, pp.
417
434
.10.1017/jfm.2011.169
21.
Ishihara
,
T.
,
Gotoh
,
T.
, and
Kaneda
,
Y.
,
2009
, “
Study of High Reynolds Number Isotropic Turbulence by Direct Numerical Simulation
,”
Annu. Rev. Fluid Mech.
,
41
(
1
), pp.
165
180
.10.1146/annurev.fluid.010908.165203
22.
Nagata
,
K.
,
Suzuki
,
H.
,
Sakai
,
Y.
,
Hayase
,
T.
, and
Kubo
,
T.
,
2008
, “
Direct Numerical Simulation of Turbulence Characteristics Generated by Fractal Grids
,”
Int. Rev. Phys.
,
2
(
6
), pp. 400–409.10.1088/0169-5983/45/6/061409
23.
Nagata
,
K.
,
Suzuki
,
H.
,
Sakai
,
Y.
,
Hayase
,
T.
, and
Kubo
,
T.
,
2008
, “
Direct Numerical Simulation of Turbulent Mixing in Grid-Generated Turbulence
,”
Phys. Scr.
,
2008
, p.
014054
.10.1088/0031-8949/2008/T132/014054
24.
Laizet
,
S.
, and
Vassilicos
,
J. C.
,
2008
, “
Direct Numerical Simulation of Fractal-Generated Turbulence
,”
DLES-7
, Trieste.
25.
Laizet
,
S.
, and
Vassilicos
,
J. C.
,
2009
, “
Direct Numerical Simulation of Turbulent Flows Generated by Regular and Fractal Grids Using an Immersed Boundary Method
,”
6th International Symposium on Turbulence and Shear Flow Phenomena (TSFP)
, Seoul, South Korea.
26.
Laizet
,
S.
, and
Vassilicos
,
J. C.
,
2011
, “
DNS of Fractal-Generated Turbulence
,”
Flow, Turbul. Combust.
,
87
(
4
), pp.
673
705
.10.1007/s10494-011-9351-2
27.
Djenidi
,
L.
, and
Tardu
,
S. F.
,
2012
, “
On the Anisotropy of a Low-Reynolds-Number Grid Turbulence
,”
J. Fluid Mech.
,
702
, pp.
332
353
.10.1017/jfm.2012.179
28.
Djenidi
,
L.
,
Tardu
,
S. F.
, and
Antonia
,
R. a.
,
2013
, “
Relationship Between Temporal and Spatial Averages in Grid Turbulence
,”
J. Fluid Mech.
,
730
, pp.
593
606
.10.1017/jfm.2013.351
29.
Medjroubi
,
W.
,
Hochstein
,
H.
,
Fuchs
,
A.
,
Gülker
,
G.
, and
Peinke
,
J.
,
2013
, “
Experimental and Computational Investigation of a Fractal Grid Wake
,”
14th European Turbulence Conference
, Lyon, France.
30.
ESWIRP—Home
,” http://www.eswirp.eu/
31.
Sreenivasan
,
K. R.
,
1998
, “
An Update on the Energy Dissipation Rate in Isotropic Turbulence
,”
Phys. Fluids
,
10
(2), pp. 528–529.10.1063/1.869575
32.
Hinze
,
J. O.
,
1975
,
Turbulence
,
McGraw-Hill
,
New York
.
33.
Launder
,
B.
, and
Spalding
,
D. B.
,
1972
,
Lectures in Mathematical Models of Turbulence
,
Academic Press
, University of Michigan, Ann Arbor, MI.
34.
Ansys Inc.
,
2011
, ANSYS FLUENT Theory Guide.
35.
Launder
,
B.
, and
Spalding
,
D.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.10.1016/0045-7825(74)90029-2
36.
Yakhot
,
V.
, and
Orszag
,
S. A.
,
1986
, “
Renormalization Group Analysis of Turbulence. I. Basic Theory
,”
J. Sci. Comput.
,
1
(
1
), pp.
3
51
.10.1007/BF01061452
37.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k-Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.10.1016/0045-7930(94)00032-T
38.
Chien
,
K.-Y.
,
1982
, “
Predictions of Channel and Boundary-Layer Flows With a Low-Reynolds-Number Turbulence Model
,”
AIAA J.
,
20
(
1
), pp.
33
38
.10.2514/3.51043
39.
Wilcox
,
D. C.
,
1998
,
Turbulence Modeling for CFD
,
DCW Industries, Inc.
,
La Cañada, CA
.
40.
Wilcox
,
D. C.
,
1988
, “
Reassessment of the Scale-Determining Equation for Advanced Turbulence Models
,”
AIAA J.
,
26
(
11
), pp.
1299
1310
.10.2514/3.10041
41.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
42.
Sogachev
,
A.
, and
Panferov
,
O.
,
2006
, “
Modification of Two-Equation Models to Account for Plant Drag
,”
Boundary-Layer Meteorol.
,
121
(
2
), pp.
229
266
.10.1007/s10546-006-9073-5
43.
Kantha
,
L.
,
Bao
,
J.-W.
, and
Carniel
,
S.
,
2005
, “
A Note on Tennekes Hypothesis and Its Impact on Second Moment Closure Models
,”
Ocean Modell.
,
9
(
1
), pp.
23
29
.10.1016/j.ocemod.2004.03.001
44.
Corrsin
,
S.
,
1963
, “
Turbulence: Experimental Methods
,”
Handbuch der Physik
, S. Flugge and C. Truesdell, eds.,
Springer
,
Berlin, Göttingen, Heidelberg
.10.1007/978-3-662-10109-4_4
You do not currently have access to this content.