In this paper, we present a new shape optimization method by using sensitivities obtained from the Arbitrary Lagrangian–Eulerian (ALE) form of the Navier–Stokes equations. In the ALE description, the nodes of the computational domain may be moved with the fluid as in the Lagrangian description, held fixed in space as in the Eulerian description, or moved in some arbitrary way in between. Applying the adjoint method with respect to mesh motion allows the whole sensitivity field for the shape changes to be calculated using only two solver calls, a primal solver call and an adjoint solver call. We show that the sensitivities with respect to the mesh motion can be calculated in a postprocessing step to the primal and adjoint flow simulations. The resulting ALE sensitivities are compared to sensitivities obtained using a finite difference approach. Finally, the sensitivities are coupled to a mesh motion smoothing algorithm, and a duct is optimized with respect to the total pressure drop using the proposed method.

References

1.
McNamara
,
A.
,
Treuille
,
A.
,
Popović
,
Z.
, and
Stam
,
J.
,
2004
, “
Fluid Control Using the Adjoint Method
,”
ACM Trans. Graphics
,
23
(
3
), pp.
449
456
.10.1145/1015706.1015744
2.
Achdou
,
Y.
, and
Pironneau
,
O.
,
2005
,
Computational Methods for Option Pricing
, Vol.
30
,
Society for Industrial Mathematics
, Philadelphia.10.1137/1.9780898717495
3.
Pironneau
,
O.
,
1973
, “
On Optimum Profiles in Stokes Flow
,”
J. Fluid Mech.
,
59
(
1
), pp.
117
128
.10.1017/S002211207300145X
4.
Jameson
,
A.
,
1988
, “
Aerodynamic Design Via Control Theory
,”
J. Sci. Comput.
,
3
(
3
), pp.
233
260
.10.1007/BF01061285
5.
Jameson
,
A.
,
Pierce
,
N.
, and
Martinelli
,
L.
,
1998
, “
Optimum Aerodynamic Design Using the Navier-Stokes Equations
,”
Theor. Comput. Fluid Dyn.
,
10
(
1
), pp.
213
237
.10.1007/s001620050060
6.
OpenFOAM® The open source CFD toolbox. http://www.openfoam.com
7.
Othmer
,
C.
,
Villiers
,
E. D.
, and
Weller
,
H.
,
2007
, “
Implementation of a Continuous Adjoint for Topology Optimization of Ducted Flows
,”
18th AIAA Computational Fluid Dynamics Conference
, June.
8.
Giles
,
M.
, and
Pierce
,
N.
,
2000
, “
An Introduction to the Adjoint Approach to Design
,”
Flow Turbul. Combust.
,
65
(
3–4
), pp.
393
415
.10.1023/A:1011430410075
9.
Nadarajah
,
S.
, and
Jameson
,
A.
,
2000
, “
A Comparison of the Continuous and Discrete Adjoint Approach to Automatic Aerodynamic Optimization
,”
AIAA
Paper No. 2000-0667.10.2514/6.2000-667
10.
Peter
,
J.
, and
Dwight
,
R.
,
2010
, “
Numerical Sensitivity Analysis for Aerodynamic Optimization: A Survey of Approaches
,”
Comput. Fluids
,
39
(
3
), pp.
373
391
.10.1016/j.compfluid.2009.09.013
11.
Richter
,
T.
, and
Wick
,
T.
,
2013
, “
Optimal Control and Parameter Estimation for Stationary Fluid-Structure Interaction Problems
,”
SIAM J. Sci. Comput.
,
35
(
5
), pp.
B1085
B1104
.10.1137/120893239
12.
Bazilevs
,
Y.
,
Hsu
,
M.-C.
, and
Bement
,
M.
,
2013
, “
Adjoint-Based Control of Fluid-Structure Interaction for Computational Steering Applications
,”
Procedia Comput. Sci.
,
18
(
0
), pp.
1989
1998
.10.1016/j.procs.2013.05.368
13.
Othmer
,
C.
,
2008
, “
A Continuous Adjoint Formulation for the Computation of Topological and Surface Sensitivities of Ducted Flows
,”
Int. J. Numer. Methods Fluids
,
58
(
8
), pp.
861
877
.10.1002/fld.1770
14.
Donea
,
J.
,
Huerta
,
A.
,
Ponthot
,
J.-P.
, and
Rodríguez-Ferran
,
A.
,
2004
,
Arbitrary Lagrangian-Eulerian Methods
,
John Wiley & Sons, Ltd.
, Chichester, West Sussex, UK.
15.
Duran
,
A.
,
2000
, “
A Numerical Formulation to Solve the ALE Navier-Stokes Equations Applied to the Withdrawal of Magma Chambers
,” Ph.D. thesis, Universitat Politècnica de Catalunya, Departament de Matemàtica Aplicada III, Barcelona, Spain.
16.
Soemarwoto
,
B.
,
1997
, “
The Variational Method for Aerodynamic Optimization Using the Navier-Stokes Equations
,” Institute for Computer Applications in Science and Engineering, Report No ICASE-97-71.
17.
Zymaris
,
A.
,
Papadimitriou
,
D.
,
Giannakoglou
,
K.
, and
Othmer
,
C.
,
2010
, “
Adjoint Wall Functions: A New Concept for Use in Aerodynamic Shape Optimization
,”
J. Comput. Phys.
,
229
(
13
), pp.
5228
5245
.10.1016/j.jcp.2010.03.037
18.
Zymaris
,
A.
,
Papadimitriou
,
D.
,
Giannakoglou
,
K.
, and
Othmer
,
C.
,
2009
, “
Continuous Adjoint Approach to the Spalart-Allmaras Turbulence Model for Incompressible Flows
,”
Comput. Fluids
,
38
(
8
), pp.
1528
1538
.10.1016/j.compfluid.2008.12.006
19.
Marta
,
A. C.
, and
Shankaran
,
S.
,
2013
, “
On the Handling of Turbulence Equations in RANS Adjoint Solvers
,”
Comput. Fluids
,
74
, pp.
102
113
.10.1016/j.compfluid.2013.01.012
20.
Nielsen
,
E. J.
, and
Anderson
,
W. K.
,
1999
, “
Aerodynamic Design Optimization on Unstructured Meshes Using the Navier-Stokes Equations
,”
AIAA J.
,
37
(
11
), pp.
1411
1419
.10.2514/2.640
21.
Dwight
,
R. P.
, and
Brezillon
,
J.
,
2006
, “
Effect of Various Approximations of the Discrete Adjoint on Gradient-Based Optimization
,”
AIAA
Paper No. 2006-0690.10.2514/6.2006-690
22.
Löhner
,
R.
,
2008
,
Applied CFD Techniques: An Introduction Based on Finite Element Methods
, 2nd ed.,
John Wiley & Sons Ltd.
, Chichester, West Sussex, UK.
23.
Amoignon
,
O. G.
,
Pralits
,
J. O.
,
Hanifi
,
A.
,
Berggren
,
M.
, and
Henningson
,
D. S.
,
2006
, “
Shape Optimization for Delay of Laminar-Turbulent Transition
,”
AIAA J.
,
44
(
5
), pp.
1009
1024
.10.2514/1.12431
24.
Othmer
,
C.
, and
Grahs
,
T.
,
2005
, “
Approaches to Fluid Dynamic Optimization in the Car Development Process
,”
International Conference on Evolutionary and Deterministic Methods for Design
, Optimization and Control With Applications to Industrial and Societal Problems.
25.
Othmer
,
C.
,
Kaminski
,
T.
, and
Giering
,
R.
,
2006
, “
Computation of Topological Sensitivities in Fluid Dynamics: Cost Function Versatility
,”
European Congress on Computational Methods in Applied Sciences and Engineering
, ECCOMAS CFD, pp.
1
12
.
26.
Helgason
,
E.
, and
Krajnović
,
S.
,
2012
, “
Aerodynamic Shape Optimization of a Pipe Using the Adjoint Method
,”
ASME International Mechanical Engineering Congress & Exposition
, Nov. 9–15.
You do not currently have access to this content.