The flow behavior of human blood in a separated and reattached flow region is investigated. Hemorheological data that account for the yield stress and shear-thinning non-Newtonian characteristics of blood are used. The governing mass and momentum conservation equations along with the Herschel–Bulkley constitutive equation are solved numerically using a finite-difference scheme. Two inflow velocity profiles are considered, uniform and fully developed (fd) ones. A parametric study is performed to reveal the impact of inflow velocity profile, upstream flow restriction, and rheology on the recirculation strength and reattachment characteristics of the flow field. Uniform inflow conditions result in larger relative recirculation intensity, in comparison with the fd ones, only for a moderate upstream flow restriction. The separated flow region size in the case of a fd inflow is always larger than the one observed for uniform inflow. Larger separated flow regions with stronger flow recirculation, are predicted by the Newtonian (N) model in comparison with the yield shear-thinning (HB) model for all studied inflow and upstream restriction conditions. The separated flow region size displays a stronger dependency on the inflow velocity profile and upstream flow restriction, in comparison with the observed dependency on the used hemorheological model.

References

References
1.
Hammad
,
K. J.
,
Otugen
,
M. V.
, and
Arik
,
E. B.
,
1999
, “
A PIV Study of the Laminar Axisymmetric Sudden Expansion Flow
,”
Exp. Fluids
,
26
(
3
), pp.
266
272
.10.1007/s003480050288
2.
Sanmiguel-Rojasa
,
E.
, and
Mullin
,
T.
,
2012
, “
Finite-Amplitude Solutions in the Flow Through a Sudden Expansion in a Circular Pipe
,”
J. Fluid Mech.
,
691
, pp.
201
213
.10.1017/jfm.2011.469
3.
Cantwell
,
C. D.
,
Barkley
,
D.
, and
Blackburn
,
H. M.
,
2010
, “
Transient Growth Analysis of Flow Through a Sudden Expansion in a Circular Pipe
,”
Phys. Fluids
,
22
(
3
), p.
034101
.10.1063/1.3313931
4.
Battaglia
,
F.
,
Tavener
,
S. J.
,
Kulkarni
,
A. K.
, and
Merkle
,
C. L.
,
1997
, “
Bifurcation of Low Reynolds Number Flows in Symmetric Channels
,”
AIAA J.
,
35
(
1
), pp.
99
105
.10.2514/2.68
5.
Chhabra
,
R. P.
, and
Richardson
,
J. F.
,
2008
,
Non-Newtonian Flow and Applied Rheology, Engineering Applications
,
2nd ed.
,
Butterworth-Heinemann/IChemE
,
Oxford
.
6.
Bird
,
R. B.
,
Dai
,
G. C.
, and
Yarusso
,
B. J.
,
1983
, “
The Rheology and Flow of Viscoplastic Materials
,”
Rev. Chem. Eng.
,
1
(
1
), pp.
1
70
.
7.
Giannetti
,
F.
,
Luchini
,
P.
, and
Marino
,
L.
,
2011
, “
Stability and Sensitivity Analysis of Non-Newtonian Flow Through an Axisymmetric Expansion
,”
J. Phys.: Conf. Ser.
,
318
(
3
), p.
032015
10.1088/1742-6596/318/3/032015.
8.
Nag
,
D.
, and
Datta
,
A.
,
2007
, “
Variation of the Recirculation Length of Newtonian and Non-Newtonian Power-Law Fluids in Laminar Flow Through a Suddenly Expanded Axisymmetric Geometry
,”
ASME J. Fluid Eng.
,
129
(
2
), pp.
245
250
.10.1115/1.2409361
9.
Hammad
,
K. J.
,
2000
, “
Effect of Hydrodynamic Conditions on Heat Transfer in a Complex Viscoplastic Flow Field
,”
Int. J. Heat Mass Transfer
,
43
(
6
), pp.
945
962
.10.1016/S0017-9310(99)00179-9
10.
Hammad
,
K. J.
,
Otugen
,
M. V.
,
Vradis
,
G. C.
, and
Arik
,
E. B.
,
1999
, “
Laminar Flow of a Nonlinear Viscoplastic Fluid Through an Axisymmetric Sudden Expansion
,”
ASME J. Fluids Eng.
,
121
(
2
), pp.
488
496
.10.1115/1.2822235
11.
Baskurt
,
O. K.
, and
Meiselman
,
H. J.
,
2003
, “
Blood Rheology and Hemodynamics
,”
Semin. Thromb. Hemost.
,
29
(
5
), pp.
435
450
.10.1055/s-2003-44551
12.
Meiselman
,
H. J.
, and
Baskurt
,
O. K.
,
2006
, “
Hemorheology and Hemodynamics: Dove Andare?
,”
Clin. Hemorheol. Microcirc.
,
35
(
1–2
), pp.
37
43
.
13.
Cicco
,
G.
, and
Cicco
,
S.
,
2010
, “
The Influence of Oxygen Supply, Hemorheology and Microcirculation in the Heart and Vascular Systems
,”
Oxygen Transport to Tissue XXXI, Adv. Exp. Med. Biol.
,
662
, pp.
33
39
.10.1007/978-1-4419-1241-1
14.
Valant
,
A. Z.
,
Žiberna
,
L.
,
Papaharilaou
,
Y.
,
Anayiotos
,
A.
, and
Georgiou
,
G. C.
,
2011
, “
The Influence of Temperature on Rheological Properties of Blood Mixtures With Different Volume Expanders—Implications in Numerical Arterial Hemodynamics Simulations
,”
Rheol. Acta
,
50
(
4
), pp.
389
402
.10.1007/s00397-010-0518-x
15.
Kim
,
S.
,
Namgung
,
B.
,
Ong
,
P. K.
,
Cho
,
Y. I.
,
Chun
,
K. J.
, and
Lim
,
D.
,
2009
, “
Determination of Rheological Properties of Whole Blood With a Scanning Capillary-Tube Rheometer Using Constitutive Models
,”
J. Mech. Sci. Technol.
,
23
(
6
), pp.
1718
1726
.10.1007/s12206-009-0420-6
16.
Robertson
,
A. M.
,
Sequeira
,
A.
, and
Owens
,
R. G.
,
2009
, “
Rheological Models for Blood
,”
Cardiovascular Mathematics
, Vol.
I
,
Springer
,
Milan
, pp.
211
241
10.1007/978-88-470-1152-6_6.
17.
Feurstein
,
I. F.
,
Pike
,
G. K.
, and
Rounds
,
G. F.
,
1975
, “
Flow in an Abrupt Expansion as a Model for Biological Mass Transfer Experiments
,”
ASME J. Biomech. Eng.
,
8
(
1
), pp.
41
51
.10.1016/0021-9290(75)90041-X
18.
Pollard
,
A.
,
1981
, “
A Contribution on the Effects of Inlet Condition When Modeling Stenoses Using Sudden Expansions
,”
ASME J. Biomech. Eng.
,
14
(
5
), pp.
349
355
.10.1016/0021-9290(81)90044-0
19.
Ma
,
P.
,
Li
,
X.
, and
Ku
,
D. N.
,
1994
, “
Heat and Mass Transfer in a Separated Flow Region for High Prandtl and Schmidt Numbers Under Pulsatile Conditions
,”
Int. J. Heat Mass Transfer
,
37
(
17
), pp.
2723
2736
.10.1016/0017-9310(94)90389-1
20.
Trusky
,
G. A.
,
Barber
,
K. M.
,
Robey
,
T. C.
,
Olivier
,
L. A.
, and
Combs
,
M. P.
,
1995
, “
Characterization of a Sudden Expansion Flow Chamber to Study the Response of Endothelium to Flow Recirculation
,”
ASME J. Biomech. Eng.
,
117
(
2
), pp.
203
210
.10.1115/1.2796002
21.
Caro
,
C. G.
,
Pedley
,
T. J.
,
Schroter
,
R. C.
, and
Seed
,
W. A.
,
2012
,
The Mechanics of the Circulation
,
2nd ed.
,
Cambridge University
,
Cambridge
10.1017/CBO9781139013406.
22.
Vradis
,
G. C.
, and
Hammad
,
K. J.
,
1998
, “
Strongly Coupled Block-Implicit Solution Technique for Non-Newtonian Convective Heat Transfer Problems
,”
Numer. Heat Transfer, Part B
,
33
(
1
), pp.
79
97
.10.1080/10407799808915024
23.
Hammad
,
K. J.
,
2013
, “
Hemorheology and the Flow Behavior in a Separated Flow Region
,”
ASME
Paper No. IMECE2013-62548.10.1115/IMECE2013-62548
24.
Hammad
,
K. J.
,
Wang
,
F.
,
Ötügen
,
M. V.
, and
Vradis
,
G. C.
,
1997
, “
Suddenly Expanding Axisymmetric Flow of a Yield Stress Fluid
,”
Album Vis.
14
, pp.
17
18
.
25.
Hammad
,
K. J.
,
Vradis
,
G. C.
, and
Ötügen
,
M. V.
,
2001
, “
Laminar Flow of a Herschel–Bulkley Fluid Over an Axisymmetric Sudden Expansion
,”
ASME J. Fluids Eng.
,
123
(
3
), pp.
588
594
.10.1115/1.1378023
26.
Papanastasiou
,
T. C.
,
1987
, “
Flow of Materials With Yield
,”
J. Rheol.
,
31
(
5
), pp.
385
403
.10.1122/1.549926
27.
Ellwood
,
K. R. J.
,
Georgiou
,
G. C.
,
Papanastasiou
,
T. C.
, and
Wilkes
,
J. O.
,
1990
, “
Laminar Jets of Bingham Plastic Liquids
,”
J. Rheol.
,
34
(
6
), pp.
787
812
.10.1122/1.550144
28.
Hammad
,
K. J.
,
2014
, “
Velocity and Momentum Decay Characteristics of a Submerged Viscoplastic Jet
,”
ASME J. Fluids Eng.
,
136
(
2
), p.
021205
.10.1115/1.4025990
29.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H. W.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
30.
Gray
,
J. D.
,
Owen
,
I.
, and
Escudier
,
M. P.
,
2007
, “
Dynamic Scaling of Unsteady Shear-Thinning Non-Newtonian Fluid Flows in a Large-Scale Model of a Distal Anastomosis
,”
Exp. Fluids
,
43
(
4
), pp.
535
546
.10.1007/s00348-007-0317-z
31.
Bark
,
D. L.
, Jr.
, and
Ku
,
D. N.
,
2010
, “
Wall Shear Over High Degree Stenosis Pertinent to Atherothrombosis
,”
ASME J. Biomech. Eng.
,
43
(
15
), pp.
2970
2977
.10.1016/j.jbiomech.2010.07.011
32.
Mullin
,
T.
,
Seddon
,
J. R. T.
,
Mantle
,
M. D.
, and
Sederman
,
A. J.
,
2009
, “
Bifurcation Phenomena in the Flow Through a Sudden Expansion in a Circular Pipe
,”
Phys. Fluids
,
21
(
1
), p.
014110
.10.1063/1.3065482
33.
Sanmiguel-Rojas
,
E.
,
Del Pino
,
C.
, and
Gutiérrez-Montes
,
C.
,
2010
, “
Global Mode Analysis of a Pipe Flow Through a 1:2 Axisymmetric Sudden Expansion
,”
Phys. Fluids
,
22
(
7
), p.
071702
.10.1063/1.3458889
34.
Hammad
,
K. J.
,
2013
, “
The Impact of Hemorheology on Wall Shear Stress in a Separated and Reattached Flow Region
,”
ASME
Paper No. IMECE2013-62549.10.1115/IMECE2013-62549
You do not currently have access to this content.