We are comparing results of numerical simulations against high-speed simultaneous observations of cavitation and cavitation erosion. We performed fully compressible, cavitating flow simulations to resolve the formation of the shock waves at cloud collapse—these are believed to be directly related to the formation of the damage. Good agreements were noticed between calculations and tests. Two high pressure peaks were found during one cavitation cycle. One relates to the cavitation collapse and the other one corresponds to the cavitation shed off, both contributing to a distinctive stepwise erosion damage growth pattern. Additional, more precise, simulations with much shorter time step were performed to investigate the processes of cavitation collapse and shedding off in more detail. There the importance of small cavitation structures which collapse independently of the main cloud was found. The present work shows a great potential for future development of techniques for accurate predictions of cavitation erosion by numerical means only.

References

References
1.
Yamada
,
H.
, and
Uchiumi
,
M.
,
2008
, “
A Case Study of Fluid-Dynamic Vibrations of Rocket Turbopumps
,”
Turbomachinery
,
36
(
2
), pp.
3
9
.
2.
Liu
,
H. L.
,
Wang
,
J.
,
Wang
,
Y.
,
Zhang
,
H.
, and
Huang
,
H.
,
2014
, “
Influence of the Empirical Coefficients of Cavitation Model on Predicting Cavitating Flow in the Centrifugal Pump
,”
Int. J. Nav. Archit. Ocean Eng.
,
6
(
1
), pp.
119
131
.10.2478/ijnaoe-2013-0167
3.
Dular
,
M.
,
Bachert
,
B.
,
Stoffel
,
B.
, and
Širok
,
B.
,
2004
, “
Relationship Between Cavitation Structures and Cavitation Damage
,”
Wear
,
257
(
11
), pp.
1176
1184
.10.1016/j.wear.2004.08.004
4.
Kato
,
H.
,
Konno
,
A.
,
Maeda
,
M.
, and
Yamaguchi
,
H.
,
1996
, “
Possibility of Quantitative Prediction of Cavitation Erosion without Model Test
,”
ASME J. Fluids Eng.
,
118
(
3
), pp.
582
588
.10.1115/1.2817798
5.
Berchiche
,
N.
,
Franc
,
J. P.
, and
Michel
,
J. M.
,
2002
, “
A Cavitation Erosion Model for Ductile Materials
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
601
606
.10.1115/1.1486474
6.
Franc
,
J. P.
,
Karimi
,
A.
,
Chahine
,
G. L.
, and
Riondet
,
M.
,
2011
, “
Impact Load Measurements in an Erosive Cavitating Flow
,”
ASME J. Fluids Eng.
,
133
(
12
), p.
121301
.10.1115/1.4005342
7.
Franc
,
J. P.
,
2009
, “
Incubation Time and Cavitation Erosion Rate of Work-Hardening Materials
,”
ASME J. Fluids Eng.
,
131
(
2
), p.
021303
.10.1115/1.3063646
8.
Franc
,
J. P.
,
Riondet
,
M.
,
Karimi
,
A.
, and
Chahine
,
G. L.
,
2012
, “
Material and Velocity Effects on Cavitation Erosion Pitting
,”
Wear
,
274
, pp.
248
259
.10.1016/j.wear.2011.09.006
9.
Crum
,
L. A.
,
1995
, “
Comments on the Evolving Field of Sonochemistry by a Cavitation Physicist
,”
Ultrason. Sonochem.
,
2
(
2
), pp.
147
152
.10.1016/1350-4177(95)00018-2
10.
Wang
,
Y. C.
, and
Brennen
,
C. E.
,
1994
, “
Shock Wave Development in the Collapse of a Cloud of Bubbles
,”
ASME
Paper No. FED Vol. 194, pp.
15
19
.
11.
Fortes-Patella
,
R.
,
Archer
,
A.
, and
Flageul
,
C.
,
2012
, “
Numerical and Experimental Investigations on Cavitation Erosion
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
15
(
2
), p.
022013
.10.1088/1755-1315/15/2/022013
12.
Fortes-Patella
,
R.
,
Challier
,
G.
,
Reboud
,
J. L.
, and
Archer
,
A.
,
2013
, “
Energy Balance in Cavitation Erosion: From Bubble Collapse to Indentation of Material Surface
,”
ASME J. Fluids Eng.
,
135
(
1
), p.
011303
.10.1115/1.4023076
13.
Bark
,
G.
, and
Bensow
,
R. E.
,
2014
, “
Hydrodynamic Processes Controlling Cavitation Erosion
,”
Advanced Experimental and Numerical Techniques for Cavitation Erosion Prediction
,
K.-H.
Kim
,
G.
Chahine
,
J.-P.
Franc
, and
A.
Karimi
, eds.,
Springer
,
New York
.
14.
Bark
,
G.
, and
Bensow
,
R. E.
,
2013
, “
Hydrodynamic Mechanisms Controlling Cavitation Erosion
,”
Int. Shipbuild. Prog.
,
60
(
1
), pp.
345
374
10.3233/ISP-130097.
15.
Bensow
,
R.
,
Bark
,
G.
, and
Lu
,
N. X.
,
2012
, “
Hydrodynamic Mechanisms in Cavitation Erosion
,”
Proceedings of the 8th International Symposium Cavitation
, CAV2012, Singapore.
16.
Bensow
,
R. E.
, and
Bark
,
G.
,
2010
, “
Implicit LES Predictions of the Cavitating Flow on a Propeller
,”
ASME J. Fluids Eng.
,
132
(
4
), p.
041302
.10.1115/1.4001342
17.
Chen
,
Y. L.
, and
Israelachvili
,
J.
,
1991
, “
New Mechanism of Cavitation Damage
,”
Science
,
252
(5009), pp.
1157
1160
.10.1126/science.252.5009.1157
18.
Petkovšek
,
M.
, and
Dular
,
M.
,
2013
, “
Simultaneous Observation of Cavitation Structures and Cavitation Erosion
,”
Wear
,
300
(
1
), pp.
55
64
.10.1016/j.wear.2013.01.106
19.
Wang
,
Y. C.
, and
Brennen
,
C. E.
,
1999
, “
Numerical Computation of Shock Waves in a Spherical Cloud of Cavitation Bubbles
,”
ASME J. Fluids Eng.
,
121
(
4
), pp.
872
880
.10.1115/1.2823549
20.
Li
,
Z. R.
,
Pourquie
,
M.
, and
Terwisga
,
T. V.
,
2014
, “
Assessment of Cavitation Erosion With a URANS Method
,”
ASME J. Fluids Eng.
,
136
(
4
), p.
041101
.10.1115/1.4026195
21.
Luo
,
X.
,
Ji
,
B.
,
Peng
,
X.
,
Xu
,
H.
, and
Nishi
,
M.
,
2012
, “
Numerical Simulation of Cavity Shedding From a Three-Dimensional Twisted Hydrofoil and Induced Pressure Fluctuation by Large-Eddy Simulation
,”
ASME J. Fluids Eng.
,
134
(
4
), p.
041202
.10.1115/1.4006416
22.
Huang
,
B.
,
Young
,
Y. L.
,
Wang
,
G.
, and
Shyy
,
W.
,
2013
, “
Combined Experimental and Computational Investigation of Unsteady Structure of Sheet/Cloud Cavitation
,”
ASME J. Fluids Eng.
,
135
(
7
), p.
071301
.10.1115/1.4023650
23.
Ochiai
,
N.
,
Iga
,
Y.
,
Nohmi
,
M.
, and
Ikohagi
,
T.
,
2012
, “
Study of Quantitative Numerical Prediction of Cavitation Erosion in Cavitating Flow
,”
ASME J. Fluids Eng.
,
135
(
1
), p.
011302
.10.1115/1.4023072
24.
Dular
,
M.
, and
Coutier-Delgosha
,
O.
,
2009
, “
Numerical Modelling of Cavitation Erosion
,”
Int. J. Numer. Methods Fluids
,
61
(
12
), pp.
1388
1410
.10.1002/fld.2003
25.
Schnerr
,
G. H.
,
Sezal
,
I. H.
, and
Schmidt
,
S. J.
,
2008
, “
Numerical Investigation of Three-Dimensional Cloud Cavitation With Special Emphasis on Collapse Induced Shock Dynamics
,”
Phys. Fluids
,
20
(
4
), p.
040703
.10.1063/1.2911039
26.
Cencic
,
T.
,
Hocevar
,
M.
, and
Sirok
,
B.
,
2014
, “
Study of Erosive Cavitation Detection in Pump Mode of Pump-Storage Hydropower Plant Prototype
,”
ASME J. Fluids Eng.
,
136
(
5
), p.
051301
.10.1115/1.4026476
27.
Escaler
,
X.
,
Ekanger
,
J. V.
,
Francke
,
H. H.
,
Kjeldsen
,
M.
, and
Nielsen
,
T. K.
,
2014
, “
Detection of Draft Tube Surge and Erosive Blade Cavitation in a Full-Scale Francis Turbine
,”
ASME J. Fluids Eng.
,
137
(
1
), p.
011103
.10.1115/1.4027541
28.
Dular
,
M.
,
Bachert
,
B.
,
Stoffel
,
B.
, and
Sirok
,
B.
,
2004
, “
Relationship Between Cavitation Structures and Cavitation Damage
,”
Wear
,
257
(
11
), pp.
1176
1184
.10.1016/j.wear.2004.08.004
29.
Dular
,
M.
, and
Osterman
,
A.
,
2008
, “
Pit Clustering in Cavitation Erosion
,”
Wear
,
265
(
5
), pp.
811
820
.10.1016/j.wear.2008.01.005
30.
Keil
,
T.
,
Pelz
,
P. F.
,
Cordes
,
U.
, and
Ludwig
,
G.
,
2011
, “
Cloud Cavitation and Cavitation Erosion in Convergent Divergent Nozzle
,”
WIMRC 3rd International Cavitation Forum 2011
, University of Warwick, Coventry, UK.
31.
Coutier-Delgosha
,
O.
,
Fortes-Patella
,
R.
, and
Reboud
,
J. L.
,
2003
, “
Evaluation of the Turbulence Model Influence on the Numerical Simulations of Unsteady Cavitation
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
38
45
.10.1115/1.1524584
32.
Zwart
,
P.
,
Gerber
,
A. G.
, and
Belamri
,
T.
,
2004
, “
A Two-Phase Model for Predicting Cavitation Dynamics
,”
Proceedings of the ICMF2004 International Conference on Multiphase Flow
, Yokohama, Japan.
33.
Dular
,
M.
,
Bachert
,
R.
,
Stoffel
,
B.
, and
Širok
,
B.
,
2005
, “
Experimental Evaluation of Numerical Simulation of Cavitating Flow around Hydrofoil
,”
Eur. J. Mech. B/Fluids
,
24
(
4
), pp.
522
538
.10.1016/j.euromechflu.2004.10.004
You do not currently have access to this content.