The gas flow characteristics in rectangular cross section converging–diverging micronozzles incorporating the effect of three-dimensional (3D) rough surface topography are investigated. The fractal geometry is utilized to describe the multiscale self-affine roughness. A first-order slip model suitable for rough walls is adopted to characterize the slip velocities. The flow field in micronozzles is analyzed by solving 3D Navier–Stokes (N–S) equation. The results show that the dependence of mass flow rate on the pressure difference has a good agreement with the reported results. The presence of surface topography obviously perturbs the gas flow near the wall. Moreover, as the surface roughness height increases, this perturbation induces the supersonic “multiwaves” phenomenon in the divergent region, in which the Mach number fluctuates. In addition, the effect of 3D surface topography on performance is also investigated.

References

References
1.
Shimane
,
R.
,
Kumagai
,
S.
,
Hashizume
,
H.
,
Ohta
,
T.
,
Ito
,
M.
,
Hori
,
M.
, and
Sasaki
,
M.
,
2014
, “
Localized Plasma Irradiation Through a Micronozzle for Individual Cell Treatment
,”
Jpn. J. Appl. Phys.
,
53
(
11S
), p.
11RB03
.10.7567/JJAP.53.11RB03
2.
Lu
,
Z.
,
Barnard
,
D.
,
Shaikh
,
T. R.
,
Meng
,
X.
,
Mannella
,
C. A.
,
Yassin
,
A. S.
,
Agrawal
,
R. K.
,
Wagenknecht
,
T.
, and
Lu
,
T.-M.
,
2014
, “
Gas-Assisted Annular Microsprayer for Sample Preparation for Time-Resolved Cryo-Electron Microscopy
,”
J. Micromech. Microeng.
,
24
(
11
), p.
115001
.10.1088/0960-1317/24/11/115001
3.
Bayt
,
R. L.
,
1999
, “
Analysis, Fabrication and Testing of a MEMS-Based Micropropulsion System
,” Aerospace Computational Design Laboratory, Department of Aeronautics & Astronautics, Massachusetts Institute of Technology, Report No. FDRL TR-99-1.
4.
Torre
,
F. L.
,
Kenjeres
,
S.
,
Kleijn
,
C. R.
, and
Moerel
,
J.-L. P.
,
2010
, “
Effects of Wavy Surface Roughness on the Performance of Micronozzles
,”
J. Propul. Power
,
26
(
4
), pp.
655
662
.10.2514/1.44828
5.
Watvisave
,
D.
,
Bhandarkar
,
U.
, and
Puranik
,
B.
,
2013
, “
Investigation of Wall Effects on Flow Characteristics of a High Knudsen Number Nozzle
,”
Nanoscale Microscale Thermophys. Eng.
,
17
(
2
), pp.
124
140
.10.1080/15567265.2012.760694
6.
Moríñigo
,
J. A.
, and
Hermida-Quesada
,
J.
,
2010
, “
Solid–Gas Surface Effect on the Performance of a MEMS-Class Nozzle for Micropropulsion
,”
Sens. Actuators, A
,
162
(
1
), pp.
61
71
.10.1016/j.sna.2010.06.006
7.
Ketsdever
,
A. D.
,
Clabough
,
M. T.
,
Gimelshein
,
S. F.
, and
Alexeenko
,
A. A.
,
2005
, “
Experimental and Numerical Determination of Micropropulsion Device Efficiencies at Low Reynolds Numbers
,”
AIAA J.
,
43
(
3
), pp.
633
641
.10.2514/1.10284
8.
Nagai
,
H.
,
Naraoka
,
R.
,
Sawada
,
K.
, and
Asai
,
K.
,
2008
, “
Pressure-Sensitive Paint Measurement of Pressure Distribution in a Supersonic Micronozzle
,”
AIAA J.
,
46
(
1
), pp.
215
222
.10.2514/1.28371
9.
San
,
O.
,
Bayraktar
,
I.
, and
Bayraktar
,
T.
,
2009
, “
Size and Expansion Ratio Analysis of Micro Nozzle Gas Flow
,”
Int. Commun. Heat Mass Transfer
,
36
(
5
), pp.
402
411
.10.1016/j.icheatmasstransfer.2009.01.021
10.
Sebastião
,
I. B.
, and
Santos
,
W. F.
,
2014
, “
Numerical Simulation of Heat Transfer and Pressure Distributions in Micronozzles With Surface Discontinuities on the Divergent Contour
,”
Comput. Fluids
,
92
(
20
), pp.
125
137
.10.1016/j.compfluid.2013.12.023
11.
Louisos
,
W.
, and
Hitt
,
D.
,
2012
, “
Viscous Effects on Performance of Three-Dimensional Supersonic Micronozzles
,”
J. Spacecr. Rockets
,
49
(
1
), pp.
51
58
.10.2514/1.53026
12.
Xie
,
C.
,
2007
, “
Characteristics of Micronozzle Gas Flows
,”
Phys. Fluids
,
19
(
3
), p.
037102
.10.1063/1.2709707
13.
Sun
,
Z.-X.
,
Li
,
Z.-Y.
,
He
,
Y.-L.
, and
Tao
,
W.-Q.
,
2009
, “
Coupled Solid (FVM)–Fluid (DSMC) Simulation of Micro-Nozzle With Unstructured-Grid
,”
Microfluid. Nanofluid.
,
7
(
5
), pp.
621
631
.10.1007/s10404-009-0418-5
14.
Darbandi
,
M.
, and
Roohi
,
E.
,
2011
, “
Study of Subsonic–Supersonic Gas Flow Through Micro/Nanoscale Nozzles Using Unstructured DSMC Solver
,”
Microfluid. Nanofluid.
,
10
(
2
), pp.
321
335
.10.1007/s10404-010-0671-7
15.
Zhang
,
W.-M.
,
Meng
,
G.
, and
Wei
,
X.
,
2012
, “
A Review on Slip Models for Gas Microflows
,”
Microfluid. Nanofluid.
,
13
(
6
), pp.
845
882
.10.1007/s10404-012-1012-9
16.
Bhattacharyya
,
S.
, and
Nayak
,
A.
,
2010
, “
Combined Effect of Surface Roughness and Heterogeneity of Wall Potential on Electroosmosis in Microfluidic/Nanofuidic Channels
,”
ASME J. Fluids Eng.
,
132
(
4
), p.
041103
.10.1115/1.4001308
17.
Yan
,
X.
, and
Wang
,
Q.
,
2009
, “
Numerical Investigation of Combined Effects of Rarefaction and Compressibility for Gas Flow in Microchannels and Microtubes
,”
ASME J. Fluids Eng.
,
131
(
10
), p.
101201
.10.1115/1.3215941
18.
Cho
,
C.-C.
, and
Chen
,
C.-L.
,
2013
, “
Characteristics of Transient Electroosmotic Flow in Microchannels With Complex-Wavy Surface and Periodic Time-Varying Electric Field
,”
ASME J. Fluids Eng.
,
135
(
2
), p.
021301
.10.1115/1.4023441
19.
Xiong
,
R.
,
2011
, “
Fluid Flow in Trapezoidal Silicon Microchannels With 3D Random Rough Bottoms
,”
ASME J. Fluids Eng.
,
133
(
3
), p.
031102
.10.1115/1.4003423
20.
Duan
,
Z.
, and
Muzychka
,
Y.
,
2008
, “
Effects of Corrugated Roughness on Developed Laminar Flow in Microtubes
,”
ASME J. Fluids Eng.
,
130
(
3
), p.
031102
.10.1115/1.2842148
21.
Duan
,
Z.
, and
Muzychka
,
Y.
,
2010
, “
Effects of Axial Corrugated Roughness on Low Reynolds Number Slip Flow and Continuum Flow in Microtubes
,”
ASME J. Heat Transfer
,
132
(
4
), p.
041001
.10.1115/1.3211854
22.
Bahrami
,
M.
,
Yovanovich
,
M.
, and
Culham
,
J.
,
2006
, “
Pressure Drop of Fully Developed, Laminar Flow in Rough Microtubes
,”
ASME J. Fluids Eng.
,
128
(
3
), pp.
632
637
.10.1115/1.2175171
23.
Zhang
,
W.-M.
,
Meng
,
G.
, and
Wei
,
K.-X.
,
2012
, “
Numerical Prediction of Surface Roughness Effect on Slip Flow in Gas-Lubricated Journal Microbearings
,”
Tribol. Tras.
,
55
(
1
), pp.
71
76
.10.1080/10402004.2011.599510
24.
Ngalande
,
C.
,
Lilly
,
T.
,
Killingsworth
,
M.
,
Gimelshein
,
S.
, and
Ketsdever
,
A.
,
2006
, “
Nozzle Plume Impingement on Spacecraft Surfaces: Effects of Surface Roughness
,”
J. Spacecr. Rockets
,
43
(
5
), pp.
1013
1018
.10.2514/1.19321
25.
Sucec
,
J.
,
2014
, “
An Integral Solution for Skin Friction in Turbulent Flow Over Aerodynamically Rough Surfaces With an Arbitrary Pressure Gradient
,”
ASME J. Fluids Eng.
,
136
(
8
), p.
081103
.10.1115/1.4027140
26.
Chen
,
Y.
,
Zhang
,
C.
,
Shi
,
M.
, and
Peterson
,
G. P.
,
2012
, “
Slip Boundary for Fluid Flow at Rough Solid Surfaces
,”
Appl. Phys. Lett.
,
100
(
7
), p.
074102
.10.1063/1.3685490
27.
Sayles
,
R. S.
, and
Thomas
,
T. R.
,
1978
, “
Surface Topography as a Nonstationary Random Process
,”
Nature
,
271
(
5644
), pp.
431
434
.10.1038/271431a0
28.
Chen
,
Y.
,
Zhang
,
C.
,
Shi
,
M.
, and
Peterson
,
G.
,
2009
, “
Role of Surface Roughness Characterized by Fractal Geometry on Laminar Flow in Microchannels
,”
Phys. Rev. E
,
80
(
2
), pp.
1
7
.10.1103/PhysRevE.80.026301
29.
Zhang
,
C.
,
Chen
,
Y.
,
Deng
,
Z.
, and
Shi
,
M.
,
2012
, “
Role of Rough Surface Topography on Gas Slip Flow in Microchannels
,”
Phys. Rev. E
,
86
(
1
), p.
016319
.10.1103/PhysRevE.86.016319
30.
Zhang
,
C.
,
Deng
,
Z.
, and
Chen
,
Y.
,
2014
, “
Temperature Jump at Rough Gas–Solid Interface in Couette Flow With a Rough Surface Described by Cantor Fractal
,”
Int. J. Heat Mass Tranfer
,
70
, pp.
322
329
.10.1016/j.ijheatmasstransfer.2013.10.080
31.
Majumdar
,
A.
, and
Bhushan
,
B.
,
1990
, “
Role of Fractal Geometry in Roughness Characterization and Contact Mechanics of Surfaces
,”
ASME J. Tribol.
,
112
(
2
), pp.
205
216
.10.1115/1.2920243
32.
Majumdar
,
A.
, and
Tien
,
C.
,
1990
, “
Fractal Characterization and Simulation of Rough Surfaces
,”
Wear
,
136
(
2
), pp.
313
327
.10.1016/0043-1648(90)90154-3
33.
Yan
,
W.
, and
Komvopoulos
,
K.
,
1998
, “
Contact Analysis of Elastic–Plastic Fractal Surfaces
,”
J. Appl. Phys.
,
84
(
7
), pp.
3617
3624
.10.1063/1.368536
34.
Salomon
,
D.
,
2007
,
Curves and Surfaces for Computer Graphics
,
Springer
, New York.
35.
Maxwell
,
J. C.
,
1879
, “
On Stresses in Rarified Gases Arising From Inequalities of Temperature
,”
Philos. Trans. R. Soc. London
,
170
, pp.
231
256
.10.1098/rstl.1879.0067
36.
Lockerby
,
D. A.
,
Reese
,
J. M.
,
Emerson
,
D. R.
, and
Barber
,
R. W.
,
2004
, “
Velocity Boundary Condition at Solid Walls in Rarefied Gas Calculations
,”
Phys. Rev. E
,
70
(
1
), p.
017303
.10.1103/PhysRevE.70.017303
37.
Hao
,
P.-F.
,
Ding
,
Y.-T.
,
Yao
,
Z.-H.
,
He
,
F.
, and
Zhu
,
K.-Q.
,
2005
, “
Size Effect on Gas Flow in Micro Nozzles
,”
J. Micromech. Microeng.
,
15
(
11
), p.
2069
.10.1088/0960-1317/15/11/011
You do not currently have access to this content.