Considered is a cylinder channel with a single row of ten aligned impinging jets, with exit flow in the axial direction at one end of the channel. For the present predictions, an unsteady Reynolds-Averaged Navier–Stokes (RANS) solver is employed for predictions of flow characteristics within and nearby the ten impingement jets, where the jet Reynolds number is 15,000. Spectrum analysis of different flow quantities is also utilized to provide data on associated frequency content. Visualizations of three-dimensional, unsteady flow structural characteristics are also included, including instantaneous distributions of Y-component vorticity, three-dimensional streamlines, shear layer parameter ψ, and local static pressure. Kelvin–Helmholtz vortex development is then related to local, instantaneous variations of these quantities. Of particular importance are the cumulative influences of cross flows, which result in locally increased shear stress magnitudes, enhanced Kelvin–Helmholtz vortex generation instabilities, and increased magnitudes and frequencies of local flow unsteadiness, as subsequent jets are encountered with streamwise development.

References

References
1.
Stoy
,
R. L.
, and
Ben-Haim
,
Y.
,
2010
, “
Turbulent Jets in a Confined Crossflow
,”
ASME J. Fluids Eng.
,
95
(
4
), pp.
551
556
.10.1115/1.3447069
2.
Zuckerman
,
N.
, and
Lior
,
N.
,
2005
, “
Impingement Heat Transfer: Correlations and Numerical Modeling
,”
ASME J. Heat Transfer
,
127
(
5
), pp.
544
552
.10.1115/1.1861921
3.
Panda
,
R. K.
,
Sreekala
,
P.
, and
Prasad
,
B. V. S. S.
,
2011
, “
Computational and Experimental Study of Conjugate Heat Transfer From a Flat Plate With Shower Head Impinging Jets
,”
ASME
Paper No. GT-45098-2011.10.1115/GT-45098-2011
4.
Panda
,
R. K.
, and
Prasad
,
B. V. S. S.
,
2010
, “
Computational and Experimental Study of Conjugate Heat Transfer From a Flat Plate With an Impinging Jet
,”
ASME
Paper No. GT-22572-2010.10.1115/GT-22572-2010
5.
Sakakibara
,
Y.
, and
Iwamoto
,
J.
,
2008
, “
Numerical Study of Oscillation Mechanism in Underexpanded Jet Impinging on Plate
,”
ASME J. Fluids Eng.
,
120
(
3
), pp.
477
481
.10.1115/1.2820687
6.
Gilard
,
V.
, and
Brizzi
,
L.
,
2005
, “
Slot Jet Impinging on a Concave Curved Wall
,”
ASME J. Fluids Eng.
,
127
(
3
), pp.
595
603
.10.1115/1.1905643
7.
Chin
,
C.
,
Li
,
M.
,
Harkin
,
C.
,
Rochwerger
,
T.
,
Chan
,
L.
,
Ooi
,
A.
,
Risborg
,
A.
, and
Soria
,
J.
,
2012
, “
Investigation of the Flow Structures in Supersonic Free and Impinging Jet Flows
,”
ASME J. Fluids Eng.
,
135
(
3
), p.
031202
.10.1115/1.4023190
8.
Hammad
,
K. J.
, and
Milanovic
,
I.
,
2011
, “
Flow Structure in the Near-Wall Region of a Submerged Impinging Jet
,”
ASME J. Fluids Eng.
,
133
(
9
), p.
091205
.10.1115/1.4004907
9.
Kordyban
,
E.
,
1977
, “
Some Characteristics of High Waves in Closed Channels Approaching Kelvin–Helmholtz Instability
,”
ASME J. Fluids Eng.
,
99
(
2
), pp.
339
346
.10.1115/1.3448758
10.
Awasthi
,
M. K.
,
2014
, “
Study on Kelvin–Helmholtz Instability With Heat and Mass Transfer
,”
ASME J. Fluids Eng.
,
136
(
12
), p.
121202
.10.1115/1.4027599
11.
Moatimid
,
G. M.
, and
Hassan
,
M. A.
,
2013
, “
Three-Dimensional Viscous Potential Electrohydrodynamic Kelvin–Helmholtz Instability Through Vertical Cylindrical Porous Inclusions With Permeable Boundaries
,”
ASME J. Fluids Eng.
,
136
(
2
), p.
021203
.10.1115/1.4025681
12.
Lugt
,
H. J.
,
1978
,
Vortex Flow in Nature and Technology
, Vol.
1
,
Wiley-Interscience Publication
,
New York
.
13.
Didden
,
N.
, and
Ho
,
C.-M.
,
1985
, “
Unsteady Separation in a Boundary Layer Produced by an Impinging Jet
,”
J. Fluid Mech.
,
160
, pp.
235
256
.10.1017/S0022112085003469
14.
Lee
,
D. H.
,
Bae
,
J. R.
,
Park
,
H. J.
,
Lee
,
J. S.
, and
Ligrani
,
P. M.
,
2011
, “
Confined, Milliscale Unsteady Laminar Impinging Slot Jets and Surface Heat Fluxes
,”
Int. J. Heat Mass Transfer
,
54
(
11–12
), pp.
2408
2418
.10.1016/j.ijheatmasstransfer.2011.02.021
15.
Lee
,
J.
,
Ren
,
Z.
,
Ligrani
,
P. M.
,
Lee
,
D. H.
,
Fox
,
M. D.
, and
Moon
,
H.-K.
,
2014
, “
Cross-Flow Effects on Impingement Array Heat Transfer With Varying Jet-to-Target Plate Distance and Hole Spacing
,”
Int. J. Heat Mass Transfer
,
75
, pp.
534
544
.10.1016/j.ijheatmasstransfer.2014.03.040
16.
Chung
,
Y. M.
, and
Luo
,
K. H.
,
2002
, “
Unsteady Heat Transfer Analysis of an Impinging Jet
,”
ASME J. Heat Transfer
,
124
(
6
), pp.
1039
1048
.10.1115/1.1469522
17.
Janetzke
,
T.
, and
Nitsche
,
W.
,
2009
, “
Time Resolved Investigations on Flow Field and Quasi Wall Shear Stress of an Impingement Configuration With Pulsating Jets by Means of High Speed PIV and a Surface Hot Wire array
,”
Int. J. Heat Fluid Flow
,
30
(
5
), pp.
877
885
.10.1016/j.ijheatfluidflow.2009.03.006
18.
Mahesh
,
K.
,
2013
, “
Annual Review of Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
,
45
, pp.
379
407
.10.1146/annurev-fluid-120710-101115
19.
Ghalsasi
,
S.
,
2003
, “
Mixing of Jet in Crossflow: Effects of Jet Geometry
,” Master thesis, http://pqdt.calis.edu.cn/detail.aspx?id=qaIYl0jGGbY%3d
20.
Milanovic
,
I.
,
Zaman
,
K. B. M. Q.
, and
Bencic
,
T. J.
,
2012
, “
Effect of Artificial Perturbation on Unsteady Wake Vortices in Jets in Cross-Flow
,”
ASME
Paper No. FEDSM2012-72013.10.1115/FEDSM2012-72013
21.
Milanovic
,
I.
,
Zaman
,
K. B. Q. Z.
, and
Bencic
,
T.
,
2012
, “
Unsteady Wake Vortices in Jets in Cross-Flow
,”
J. Visual.
,
15
(
1
), pp.
44
55
.10.1007/s12650-011-0114-x
22.
Yao
,
Y.
, and
Maidi
,
M.
,
2011
, “
Direct Numerical Simulation of Single and Multiple Square Jets in Cross-Flow
,”
ASME J. Fluids Eng.
,
133
(
3
), p.
031201
.10.1115/1.4003588
23.
Yang
,
L.
,
Ren
,
J.
,
Jiang
,
H. D.
, and
Ligrani
,
P. M.
,
2014
, “
Experimental and Numerical Investigation of Unsteady Impingement Cooling Within a Blade Leading Edge Passage
,”
Int. J. Heat Mass Transfer
,
71
, pp.
57
68
.10.1016/j.ijheatmasstransfer.2013.12.006
24.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
,
2013
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC
, Boca Raton,
FL
, Chap. 7.
You do not currently have access to this content.