The surface pressure distributions and flow patterns developed on and around a NACA 0012 airfoil undergoing heaving and pitching were investigated at Re = 3.6 × 104. Despite extensive investigations conducted by researchers elsewhere, the surface pressure measurements are, however, not readily available in the open archives, which are of importance not only in understanding the unsteady-airfoil boundary-layer flow but also for computational fluid dynamics (CFD) validation. Nevertheless, the results show that the behavior of the surface pressure distribution and the flow pattern of pure heaving closely resembled those of pure pitching. For combined heaving and pitching, the critical aerodynamic values (such as dynamic Cl,max, peak negative Cm, Cl-hysteresis and torsional damping) always exhibited a maximum value at phase shift ϕ = 0 deg. More interestingly, the ϕ = 180 deg phase shift produced a virtually unchanged surface pressure distribution over an entire combined motion cycle.

References

1.
Shyy
,
W.
,
Aono
,
H.
,
Chimakurthi
,
S. K.
,
Trizila
,
P.
,
Kang
,
C.-K.
,
Cesnik
,
C. E. S.
, and
Liu
,
H.
,
2010
, “
Recent Progress in Flapping Wing Aerodynamics and Aeroelasticity
,”
Prog. Aeronaut. Sci.
,
46
(
7
), pp.
284
327
.10.1016/j.paerosci.2010.01.001
2.
McCroskey
,
W. J.
,
McAlister
,
K. W.
,
Carr
,
L. W.
,
Pucci
,
S. L.
,
Lamber
,
O.
, and
Indergrand
,
R. F.
,
1981
, “
Dynamic Stall on Advanced Airfoil Sections
,”
J. Am. Helicopter Soc.
,
26
(
3
), pp.
40
50
.10.4050/JAHS.26.40
3.
McCroskey
,
W. J.
,
1982
, “
Unsteady Airfoils
,”
Annu. Rev. Fluid Mech.
,
14
, pp.
285
311
. 10.1146/annurev.fl.14.010182.001441
4.
Koochesfahani
,
M. M.
,
1989
, “
Vortical Patterns in the Wake of an Oscillating Airfoil
,”
AIAA J.
,
27
(
9
), pp.
1200
1205
.10.2514/3.10246
5.
Panda
,
J.
, and
Zaman
,
K. B. M. Q.
,
1994
, “
Experimental Investigation of the Flowfield on an Oscillating Airfoil and Estimation of Lift From Wake Surveys
,”
J. Fluid Mech.
,
265
, pp.
65
95
.10.1017/S0022112094000765
6.
Lee
,
T.
, and
Gerontakos
,
P.
,
2004
, “
Investigation of Flow Over an Oscillating Airfoil
,”
J. Fluid Mech.
,
512
, pp.
313
341
.10.1017/S0022112004009851
7.
Gerontakos
,
P.
, and
Lee
,
T.
,
2008
, “
PIV Study of Flow Around Unsteady Airfoil With Dynamic Trailing-Edge Flap Deflection
,”
Exp. Fluids
,
45
(
6
), pp.
955
972
.10.1007/s00348-008-0514-4
8.
Amiralaei
,
M. R.
,
Alighanbari
,
H.
, and
Hashemi
,
S. M.
,
2011
, “
Flow Field Characteristics Study of a Flapping Airfoil Using Computational Fluid Dynamics
,”
J. Fluids Struct.
,
27
(
7
), pp.
1068
1085
.10.1016/j.jfluidstructs.2011.06.005
9.
Gharali
,
K.
, and
Johnson
,
D. A.
,
2013
, “
Dynamic Stall Simulation of a Pitching Airfoil Under Unsteady Freestream Velocity
,”
J. Fluids Struct.
,
42
, pp.
228
244
.10.1016/j.jfluidstructs.2013.05.005
10.
Lu
,
K.
,
Xie
,
Y. H.
, and
Zhang
,
D.
,
2013
, “
Numerical Study of Large Amplitude, Nonsinusoidal Motion and Camber Effects on Pitching Airfoil Propulsion
,”
J. Fluids Struct.
,
36
, pp.
184
194
.10.1016/j.jfluidstructs.2012.10.004
11.
Freymuth
,
P.
,
1990
, “
Thrust Generation by an Airfoil in Hover Modes
,”
Exp. Fluids
,
9
(
1–2
), pp.
17
24
.10.1007/BF00575331
12.
Jones
,
K. D.
,
Dohring
,
C. M.
, and
Platzer
,
M. F.
,
1998
, “
Experimental and Computational Investigation of the Knoller–Betz Effect
,”
AIAA J.
,
36
(
7
), pp.
1240
1246
.10.2514/2.505
13.
Lai
,
J. C. S.
, and
Platzer
,
M. F.
,
1999
, “
Jet Characteristics of a Plunging Airfoil
,”
AIAA J.
,
37
(
12
), pp.
1529
1537
.10.2514/3.14353
14.
Young
,
J.
, and
Lai
,
J. C. S.
,
2004
, “
Oscillation Frequency and Amplitude Effects on the Wake of a Plunging Airfoil
,”
AIAA J.
,
42
(
10
), pp.
2042
2052
.10.2514/1.5070
15.
Visbal
,
M.
,
Yilmaz
,
T. O.
, and
Rockwell
,
D.
,
2013
, “
Three-Dimensional Vortex Formation on a Heaving Low-Aspect-Ratio Wing: Computations and Experiments
,”
J. Fluids Struct.
,
38
, pp.
58
76
.10.1016/j.jfluidstructs.2012.12.005
16.
Ellington
,
C. P.
,
van den Berg
,
C.
,
Willmott
,
A. P.
, and
Thomas
,
A. L. R.
,
1996
, “
Leading-Edge Vortices in Insect Flight
,”
Nature
,
384
(
6610
), pp.
626
630
.10.1038/384626a0
17.
Anderson
,
J. M.
,
Streitlien
,
K.
,
Barrett
,
D. S.
, and
Triantafyllou
,
M. S.
,
1998
, “
Oscillating Foils of High Propulsive Efficiency
,”
J. Fluid Mech.
,
360
, pp.
41
72
.10.1017/S0022112097008392
18.
Read
,
D. A.
,
Hover
,
F. S.
, and
Triantafyllou
,
M. S.
,
2003
, “
Forces on Oscillating Foils for Propulsion and Maneuvering
,”
J. Fluids Struct.
,
17
(
1
), pp.
163
183
.10.1016/S0889-9746(02)00115-9
19.
Young
,
J.
, and
Lai
,
J. C. S.
,
2007
, “
Mechanisms Influencing the Efficiency of Oscillating Airfoil Propulsion
,”
AIAA J.
,
45
(
7
), pp.
1695
1702
.10.2514/1.27628
20.
Ashraf
,
M. A.
,
Young
,
J.
, and
Lai
,
J. C. S.
,
2011
, “
Reynolds Number, Thickness and Camber Effects on Flapping Airfoil Propulsion
,”
J. Fluids Struct.
,
27
(
2
), pp.
145
160
.10.1016/j.jfluidstructs.2010.11.010
21.
Amiralaei
,
M. R.
,
Alighanbari
,
H.
, and
Hashemi
,
S. M.
,
2010
, “
An Investigation Into the Effects of Unsteady Parameters on the Aerodynamics of a Low Reynolds Number Pitching Airfoil
,”
J. Fluids Struct.
,
26
(
6
), pp.
979
993
.10.1016/j.jfluidstructs.2010.06.004
22.
Kinsey
,
T.
, and
Dumas
,
G.
,
2012
, “
Three-Dimensional Effects on an Oscillating-Foil Hydrokinetic Turbine
,”
ASME J. Fluids Eng.
,
134
(
7
), p.
071105
.10.1115/1.4006914
23.
Baik
,
Y. S.
, and
Bernal
,
L. P.
,
2012
, “
Experimental Study of Pitching and Plunging Airfoils at Low Reynolds Numbers
,”
Exp. Fluids
,
53
(
6
), pp.
1979
1992
.10.1007/s00348-012-1401-6
24.
Chen
,
S. H.
, and
Ho
,
C. M.
,
1987
, “
Near Wake of an Unsteady Symmetric Airfoil
,”
J. Fluids Struct.
,
1
(
2
), pp.
151
164
.10.1016/S0889-9746(87)90315-X
25.
Rennie
,
R.
, and
Jumper
,
E. J.
,
1996
, “
Experimental Measurements of Dynamic Control Surface Effectiveness
,”
J. Aircr.
,
33
(
5
), pp.
880
887
.10.2514/3.47030
26.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
27.
Ericsson
,
L. E.
, and
Reding
,
J. P.
,
1988
, “
Fluid Mechanics of Dynamic Stall. Part I: Unsteady Flow Concepts
,”
J. Fluids Struct.
,
2
(
1
), pp.
1
33
.10.1016/S0889-9746(88)90116-8
28.
Leishman
,
J. G.
,
2002
,
Principles of Helicopter Aerodynamics
,
Cambridge University Press
,
New York
, pp.
379
389
.
You do not currently have access to this content.