An existing computer code for solving the quasi-one-dimensional (Q1D) flow equations governing unsteady compressible flow in tubes with smoothly varying cross section areas has been adapted to the simulation of the oscillatory flow in Stirling engines for engine design purposes. By utilizing an efficient smoothing algorithm for the area function that preserves the total volume of the tube, it has been possible to achieve a highly accurate and fully conservative numerical scheme. Submodels for wall friction and heat transfer have been added, enabling the simulation of gas heaters, gas coolers, and regenerators. The code has been used for the modeling of an α-type Stirling engine and validated for a range of operating conditions with good results.

References

References
1.
Finkelstein
,
T.
, and
Organ
,
A. J.
,
2001
,
Air Engines—The History, Science, and Reality of the Perfect Engine
,
ASME Press
,
New York
.
2.
Banduric
,
R. D.
, and
Chen
,
N. C. J.
,
1984
, “
Nonlinear Analysis of Stirling Engine Thermodynamics
,” Oak Ridge National Laboratory, Oak Ridge, TN, Technical Report No. ORNL/CON-154.
3.
Organ
,
A. J.
,
1997
,
The Regenerator and the Stirling Engine
,
Mechanical Engineering Publications Ltd.
,
London and Bury St Edmunds, UK
.
4.
Tew
,
R. C.
,
Jefferies
,
K.
, and
Miao
,
D.
,
1978
, “
A Stirling Engine Computer Model for Performance Calculations
,” National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH, Technical Report No. NASA-TM-78884.
5.
Tew
,
R. C.
,
1983
, “
Computer Program for Stirling Engine Performance Calculations
,” National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH, Technical Report No. NASA-M-82960.
6.
Geng
,
S. M.
, and
Tew
,
R. C.
,
1992
, “
Comparison of GLIMPS and HFAST Stirling Engine Code Predictions With Experimental Data
,” National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH, Technical Report No. NASA-TM-105549.
7.
Mahkamov
,
K.
,
2006
, “
An Axisymmetric Computational Fluid Dynamics Approach to the Analysis of the Working Process of a Solar Stirling Engine
,”
ASME J. Sol. Energy Eng.
,
128
(
1
), pp.
45
53
.10.1115/1.2148979
8.
Chen
,
W.-L.
,
Wong
,
K.-L.
, and
Chang
,
Y.-F.
,
2014
, “
A Computational Fluid Dynamics Study on the Heat Transfer Characteristics of the Working Cycle of a Low-Temperature-Differential γ-Type Stirling Engine
,”
Int. J. Heat Mass Transfer
,
75
, pp.
145
155
.10.1016/j.ijheatmasstransfer.2014.03.055
9.
Salazar
,
J. L.
, and
Chen
,
W.-L.
,
2014
, “
A Computational Fluid Dynamics Study on the Heat Transfer Characteristics of the Working Cycle of a β-Type Stirling Engine
,”
Energy Convers. Manage.
,
88
, pp.
177
188
.10.1016/j.enconman.2014.08.040
10.
Costa
,
S.-C.
,
Tutar
,
M.
,
Berreno
,
I.
,
Esnaola
,
J.-A.
,
Barruita
,
H.
,
García
,
D.
,
González
,
M.-A.
, and
Prieto
,
J.-I.
,
2014
, “
Experimental and Numerical Flow Investigation of Stirling Engine Regenerator
,”
Energy
,
72
, pp.
800
812
.10.1016/j.energy.2014.06.002
11.
Mahkamov
,
K.
,
2006
, “
Design Improvements to a Biomass Stirling Engine Using Mathematical Analysis and 3D CFD Modeling
,”
ASME J. Energy Res. Technol.
,
128
(
3
), pp.
203
215
.10.1115/1.2213273
12.
Campbell
,
B. T.
, and
Davis
,
R. L.
,
2009
, “
Quasi-1D Unsteady Conjugate Module for Rocket Engine and Propulsion System Simulations
,”
ASME J. Fluids Eng.
,
131
(
2
), p.
021203
.10.1115/1.3059704
13.
Nguyen
,
N. T.
,
2009
, “
One-Dimensional Unsteady Periodic Flow Model With Boundary Conditions Constrained by Differential Equations
,”
ASME J. Fluids Eng.
,
131
(
6
), p.
061201
.10.1115/1.3130244
14.
Nilsson
,
M.
,
Wåhlen
,
P.
, and
Mattsson
,
A.
,
2014
, “
Performance Testing of a Stirling Engine, With Implementation of High-Speed Pressure Measurements in the Working Gas Channel
,”
16th International Stirling Engine Conference
, Bilbao, Spain, Sept. 24–26.
15.
Eriksson
,
L.-E.
,
1995
, “
Development and Validation of Highly Modular Flow Solver Versions in G2DFLOW and G3DFLOW
,” Volvo Aero Corporation, Trollhättan, Sweden, Technical Report No. 9970-1162.
16.
Andersson
,
N.
,
Eriksson
,
L.-E.
, and
Davidson
,
L.
,
2005
, “
Large-Eddy Simulation of Subsonic Turbulent Jets and Their Radiated Sound
,”
AIAA J.
,
43
(
9
), pp.
1899
1912
.10.2514/1.13278
17.
Wollblad
,
C.
,
Eriksson
,
L.-E.
, and
Davidson
,
L.
,
2006
, “
Large Eddy Simulation of Transonic Flow With Shock Wave/Turbulent Boundary Layer Interaction
,”
AIAA J.
,
44
(
10
), pp.
2340
2353
.10.2514/1.20358
18.
Andersson
,
N.
, and
Eriksson
,
L.-E.
,
2008
, “
Prediction of Flowfield and Acoustic Signature of a Coaxial Jet Using RANS-Based Methods and Large-Eddy Simulation
,”
Int. J. Aeroacoust.
,
7
(
1
), pp.
23
40
.10.1260/147547208784079953
19.
Burak
,
M. O.
,
Billson
,
M.
,
Eriksson
,
L.-E.
, and
Baralon
,
S.
,
2009
, “
Validation of a Time- and Frequency-Domain Grazing Flow Acoustic Liner Model
,”
AIAA J.
,
47
(
8
), pp.
1841
1848
.10.2514/1.40870
20.
Burak
,
M. O.
,
Eriksson
,
L.-E.
,
Munday
,
D.
,
Gutmark
,
E.
, and
Prisell
,
E.
,
2012
, “
Experimental and Numerical Investigation of a Supersonic Convergent-Divergent Nozzle
,”
AIAA J.
,
50
(
7
), pp.
1462
1475
.10.2514/1.J050995
21.
Costa
,
S.-C.
,
Berreno
,
I.
,
Tutar
,
M.
,
Esnaola
,
J.-A.
, and
Barruita
,
H.
,
2015
, “
The Thermal Non-Equilibrium Porous Media Modeling for CFD Study of Woven Wire Matrix of a Stirling Regenerator
,”
Energy Convers. Manage.
,
89
, pp.
473
483
.10.1016/j.enconman.2014.10.019
22.
Wakeland
,
R. S.
, and
Keolian
,
R. M.
,
2003
, “
Measurements of Resistance of Individual Square-Mesh Screens to Oscillating Flow at Low and Intermediate Reynolds Numbers
,”
ASME J. Fluids Eng.
,
125
(
5
), pp.
851
862
.10.1115/1.1601254
23.
Sodré
,
J. R.
, and
Parise
,
J. A. R.
,
1997
, “
Friction Factor Determination for Flow Through Wire-Mesh Woven-Screen Matrices
,”
ASME J. Fluids Eng.
,
119
(
4
), pp.
847
851
.10.1115/1.2819507
24.
Gedeon
,
D.
, and
Wood
,
J. G.
,
1996
, “
Oscillating-Flow Regenerator Test Rig: Hardware and Theory With Derived Correlations for Screens and Felts
,” Lewis Research Center, Cleveland, OH, NASA Contractor Report No. 198442.
25.
Kim
,
S.-M.
, and
Ghiaasiaan
,
S. M.
,
2009
, “
Numerical Modeling of Laminar Pulsating Flow in Porous Media
,”
ASME J. Fluids Eng.
,
131
(
4
), p.
041203
.10.1115/1.3089541
26.
Kays
,
W. M.
, and
London
,
A. L.
,
1984
,
Compact Heat Exchangers
,
3rd ed.
,
Krieger
,
Malabar, FL
.
27.
Eriksson
,
L.-E.
,
2013
, “
Numerical Simulation of Stirling Engines
,” Chalmers University of Technology, Department of Applied Mechanics, Gothenburg, Sweden, Technical Report No. 2013:10.
28.
García
,
D.
,
González
,
M.-A.
,
Prieto
,
J.-I.
,
Herrero
,
S.
,
López
,
S.
,
Mesenero
,
I.
, and
Villasante
,
C.
,
2014
, “
Characterization of the Power and Efficiency of Stirling Engine Subsystems
,”
Appl. Energy
,
121
, pp.
51
63
.10.1016/j.apenergy.2014.01.067
You do not currently have access to this content.