It is one of the most important stable motion modes to move with tail-slaps for supercavitating vehicle. The periodical tail-slaps provide lift and restoring moment to keep a dynamic equilibrium of the vehicle. Research on the mode is significant to the stability and controllability of supercavity and its vehicle. The effect of the tail-slaps on supercavity is modeled to establish a supercavity model, combining with effects of gravity and angle of attack (AOA). Hydrodynamic forces acting on the vehicle are also formulated in the longitudinal plane based on the supercavity model and rigid body dynamics, considering its tail-slaps and control surfaces. The vehicle, which has a fixed periodical tail-slap, is simulated to calculate its hydrodynamic forces at a constant horizontal speed for different maximum pitch angles using the cavitation number embedded coefficient correction algorithm. The supercavity model is finally verified to some extent by comparing numerical results with experimental ones.

References

References
1.
Savchenko
,
Y. N.
,
2001
, “
Supercavitation—Problems and Perspectives
,”
Proceedings of the 4th International Symposium on Cavitation
, Pasadena, CA, Record No. CAV2001: Lecture 003.
2.
Kulkarni
,
S. S.
, and
Pratap
,
R.
,
2000
, “
Studies on the Dynamics of a Supercavitating Projectile
,”
Appl. Math. Model.
,
24
(
2
), pp.
113
129
.10.1016/S0307-904X(99)00028-1
3.
Kirschner
,
I. N.
,
Rosenthal
,
B. J.
, and
Uhlman
,
J. S.
,
2003
, “
Simplified Dynamical Systems Analysis of Supercavitating High-speed Bodies
,”
Proceedings of the 5th International Symposium on Cavitation
, Osaka, Japan, Paper No. Cav03-OS-7-005.
4.
Ruzzene
,
M.
, and
Soranna
,
F.
,
2002
, “
Impact Dynamics of Elastic Supercavitating Underwater Vehicles
,”
AIAA
Paper No. AIAA 2002-5632.10.2514/6.2002-563210.2514/6.2002-5632
5.
Choi
,
J. Y.
,
Ruzzene
,
M.
, and
Bauchau
,
O. A.
,
2004
, “
Dynamic Analysis of Flexible Supercavitating Vehicles Using Modal-Based Elements
,”
Simulation
,
80
(
11
), pp.
619
633
.10.1177/0037549704050915
6.
Kubenko
,
V. D.
, and
Gavrilenko
,
O. V.
,
2009
, “
Impact Interaction of Cylindrical Body With a Surface of Cavity During Supercavitation Motion in Compressible Fluid
,”
J. Fluids Struct.
,
25
(
5
), pp.
794
814
.10.1016/j.jfluidstructs.2008.07.007
7.
Serebryakov
,
V. V.
,
Kirschner
,
I. N.
, and
Schnerr
,
G. H.
,
2009
, “
High Speed Motion in Water With Supercavitation for Sub-, Trans-, Supersonic Mach Numbers
,”
Proceedings of the 7th International Symposium on Cavitation
, Ann Arbor, MI, Paper No. 72.
8.
Serebryakov
,
V. V.
,
2012
, “
Double-Cavity Scheme Dynamics of Supercavitating Flow: Prediction and Drag Reduction Problems
,”
Proceedings of the 8th International Symposium on Cavitation
, Singapore, Paper No. 39.
9.
Yu
,
K. P.
,
Zou
,
W.
,
Arndt
,
R. E. A.
, and
Guang
,
Z.
,
2012
, “
Supercavity Motion With Inertial Force in the Vertical Plane
,”
J. Hydrodyn. Ser. B
,
24
(
5
), pp.
752
759
.10.1016/S1001-6058(11)60300-4
10.
Zou
,
W.
,
Yu
,
K. P.
,
Arndt
,
R. E. A.
, and
Guang
,
Z.
,
2014
, “
Modeling and Simulation of Supercavity With Inertial Force in the Horizontal Curvilinear Motion
,”
China Ocean Eng.
,
28
(
1
), pp.
31
42
.10.1007/s13344-014-0002-y
11.
Saranjam
,
B.
,
2013
, “
Experimental and Numerical Investigation of an Unsteady Supercavitating Moving Body
,”
Ocean Eng.
,
59
(2), pp.
9
14
.10.1016/j.oceaneng.2012.12.021
12.
Lee
,
Q. T.
,
Xue
,
L. P.
, and
He
,
Y. S.
,
2008
, “
Experimental Study of Ventilated Supercavities With a Dynamic Pitching Model
,”
J. Hydrodyn. Ser. B
,
20
(
4
), pp.
456
460
.10.1016/S1001-6058(08)60080-3
13.
Yuan
,
X. L.
,
Wang
,
Y. D.
, and
Zhu
,
Z.
,
2012
, “
Experimental Studies on Hydrodynamic Characteristic of Supercavitating Vehicles
,”
Proceedings of the 8th International Symposium on Cavitation
, Singapore, Paper No. 87.
14.
Kawakami
,
E.
, and
Arndt
,
R. E. A.
,
2011
, “
Investigation of the Behavior of Ventilated Supercavities
,”
ASME J. Fluids Eng.
,
133
(
9
), p.
091305
.10.1115/1.4004911
15.
Lee
,
S. J.
,
Kawakami
,
E.
, and
Arndt
,
R. E. A.
,
2013
, “
Investigation of the Behavior of Ventilated Supercavities in a Periodic Gust Flow
,”
ASME J. Fluids Eng.
,
135
(
8
), p.
081301
.10.1115/1.4024382
16.
Sanabria
,
D. E.
,
Balas
,
G.
, and
Arndt
,
R. E. A.
,
2013
, “
Model and Control Validation of High Speed Supercavitating Vehicles
,”
ASME
Paper No. FEDSM2013-16064.10.1115/FEDSM2013-16064
17.
Shang
,
Z.
,
2013
, “
Numerical Investigations of Supercavitation Around Blunt Bodies of Submarine Shape
,”
Appl. Math. Model.
,
37
(
20–21
), pp.
8836
8845
.10.1016/j.apm.2013.04.009
18.
Zhang
,
L. X.
, and
Khoo
,
B. C.
,
2013
, “
Computations of Partial and Supercavitating Flows Using Implicit Pressure-Based Algorithm (IPA)
,”
Comput. Fluids
,
73
, pp.
1
9
.10.1016/j.compfluid.2012.12.009
19.
Pan
,
Z. C.
,
Lu
,
C. J.
,
Chen
,
Y.
, and
Hu
,
S. L.
,
2010
, “
Numerical Study of Periodically Forced-Pitching of a Supercavitating Vehicle
,”
J. Hydrodyn. Ser. B
,
22
(
5
), pp.
899
904
.10.1016/S1001-6058(10)60049-2
20.
Yu
,
K. P.
,
Zhang
,
G.
,
Zhou
,
J. J.
,
Zou
,
W.
, and
Li
,
Z. W.
,
2012
, “
Numerical Study of the Pitching Motions of Supercavitating Vehicles
,”
J. Hydrodyn. Ser. B
,
24
(
6
), pp.
951
958
.10.1016/S1001-6058(11)60323-5
21.
Serebryakov
,
V. V.
,
2009
, “
Physical-Mathematical Bases of the Principle of Independence of Cavity Expansion
,”
Proceedings of the 7th International Symposium on Cavitation
, Ann Arbor, MI, Paper No. 169.
22.
Vasin
,
A. D.
,
2001
, “
The Principle of Independence of the Cavity Sections Expansion (Logvinovich's Principle) as the Basis for Investigation on Cavitation Flows
,” Defense Technical Information Center, Ft. Belvoir, VA, pp.
2
6
.
23.
Zou
,
W.
,
Yu
,
K. P.
,
Arndt
,
R. E. A.
,
Zhang
,
G.
, and
Li
,
Z.-W.
,
2013
, “
On the Shedding of the Ventilated Supercavity With Velocity Disturbance
,”
Ocean Eng.
,
57
, pp.
223
229
.10.1016/j.oceaneng.2012.09.013
24.
Zou
,
W.
,
Yu
,
K. P.
,
Arndt
,
R. E. A.
,
Kawakami
,
E.
, and
Zhang
,
G.
,
2012
, “
On the Stability of Supercavity With Angle of Attack
,”
Proceedings of the 8th International Symposium on Cavitation
, Singapore, Paper No. 23.
25.
Zou
,
W.
,
Yu
,
K. P.
,
Arndt
,
R. E. A.
, and
Kawakami
,
E.
,
2013
, “
On Minimum Cavitation Number of Ventilated Supercavity in Water Tunnel
,”
Sci. Sin Phys. Mech. Astron.
,
56
(
2
), pp.
1
7
.10.1007/s11433-012-4972-6
You do not currently have access to this content.