We present in this paper a two-way coupled Eulerian–Lagrangian model to study the dynamics of clouds of microbubbles subjected to pressure variations and the resulting pressures on a nearby rigid wall. The model simulates the two-phase medium as a continuum and solves the Navier–Stokes equations using Eulerian grids with a time and space varying density. The microbubbles are modeled as interacting singularities representing moving and oscillating spherical bubbles, following a modified Rayleigh–Plesset–Keller–Herring equation and are tracked in a Lagrangian fashion. A two-way coupling between the Euler and Lagrange components is realized through the local mixture density determined by the bubbles' volume change and motion. Using this numerical framework, simulations involving a large number of bubbles were conducted under driving pressures at different frequencies. The results show that the frequency of the driving pressure is critical in determining the overall dynamics: either a collective strongly coupled cluster behavior or nonsynchronized weaker multiple bubble oscillations. The former creates extremely high pressures with peak values orders of magnitudes higher than that of the excitation pressure. This occurs when the driving frequency matches the natural frequency of the bubble cloud. The initial distance between the bubble cloud and the wall also affects significantly the resulting pressures. A bubble cloud collapsing very close to the wall exhibits a cascading collapse, with the bubbles farthest from the wall collapsing first and the nearest ones collapsing last, thus the energy accumulates and this results in very high pressure peaks at the wall. At farther cloud distances from the wall, the bubble cloud collapses quasi-spherically with the cloud center collapsing last.

References

References
1.
Brujan
,
E.
,
Ikeda
,
T.
,
Yoshinaka
,
K.
, and
Matsumoto
,
Y.
,
2011
, “
The Final Stage of the Collapse of a Cloud of Bubbles Close to a Rigid Boundary
,”
Ultrason. Sonochem.
,
18
(
1
), pp.
59
64
.10.1016/j.ultsonch.2010.07.004
2.
Brujan
,
E.
,
Ikeda
,
T.
, and
Matsumoto
,
Y.
,
2012
, “
Shock Wave Emission From a Cloud of Bubbles
,”
Soft Matter
,
8
(
21
), pp.
5777
5783
.10.1039/c2sm25379h
3.
Kalumuck
,
K. M.
, and
Chahine
,
G. L.
,
2000
, “
The Use of Cavitating Jets to Oxidize Organic Compounds in Water
,”
ASME J. Fluids Eng.
,
122
(
3
), pp.
l465
1470
.10.1115/1.1286993
4.
Chahine
,
G. L.
,
2014
, “
Modeling of Cavitation Dynamics and Interaction With Material
,”
Advanced Experimental and Numerical Techniques for Cavitation Erosion Prediction
, Vol.
106
,
K. H.
Kim
,
G. L.
Chahine
,
J. P.
Franc
, and
A.
Karimi
, eds.,
Springer
,
Dordrecht, The Netherlands
, pp.
123
162
10.1007/978-94-017-8539-6_6.
5.
Plesset
,
M. S.
, and
Prosperetti
,
A.
,
1977
, “
Bubble Dynamics and Cavitation
,”
Ann. Rev. Fluid Mech.
,
9
(
1
), pp.
145
185
.10.1146/annurev.fl.09.010177.001045
6.
Blake
,
J. R.
, and
Gibson
,
D. C.
,
1987
, “
Bubble Dynamics and Cavitation
,”
Ann. Rev. Fluid Mech.
,
19
(
1
), pp.
99
123
.10.1146/annurev.fl.19.010187.000531
7.
Van Wijngaarden
,
L.
,
1964
, “
On the Collective Collapse of a Large Number of Gas Bubbles in Water
,”
Proceedings of 11th International Congress of Applied Mechanics
,
Springer
,
Berlin, Germany
,
Aug. 30–Sept. 5
, pp.
854
861
.
8.
Morch
,
K. A.
,
1981
, “
Cavity Cluster Dynamics and Cavitation Erosion
,”
ASME Proceeding of the Cavitation and Polyphase Flow Forum
, Boulder, CO, June 22–24, pp.
1
10
.
9.
Chahine
,
G. L.
,
1983
, “
Cloud Cavitation: Theory
,”
Proceedings of 14th Symposium on Naval Hydrodynamics
,
National Academy Press
,
Ann Arbor, MI
, pp.
165
194
.
10.
Chahine
,
G. L.
, and
Liu
,
H.-L.
,
1985
, “
A Singular Perturbation Theory of the Growth of a Bubble Cluster in a Superheated Liquid
,”
J. Fluid Mech.
,
156
, pp.
257
279
.10.1017/S0022112085002087
11.
Chahine
,
G. L.
, and
Duraiswami
,
R.
,
1992
, “
Dynamical Interaction in a Multi-Bubble Cloud
,”
ASME J. Fluids Eng.
,
114
(
4
), pp.
680
686
.10.1115/1.2910085
12.
Esmaeeli
,
A.
, and
Tryggvason
,
G.
,
1998
, “
Direct Numerical Simulations of Bubbly Flows. Part 1. Low Reynolds Number Array
,”
J. Fluid Mech.
,
377
, pp.
313
345
.10.1017/S0022112098003176
13.
Lu
,
J.
,
Biswas
,
S.
, and
Tryggvason
,
G.
,
2006
, “
A DNS Study of Laminar Bubbly Flows in a Vertical Channel
,”
Int. J. Multiphase Flow
,
32
(
6
), pp.
643
660
.10.1016/j.ijmultiphaseflow.2006.02.003
14.
Seo
,
J. H.
,
Lele
,
S. K.
, and
Tryggvason
,
G.
,
2010
, “
Investigation and Modeling of Bubble–Bubble Interaction Effect in Homogeneous Bubbly Flows
,”
Phys. Fluids
,
22
(
6
), p.
063302
.10.1063/1.3432503
15.
Crowe
,
C. T.
,
Troutt
,
T. R.
, and
Chung
,
J. N.
,
1996
, “
Numerical Models for Two-Phase Turbulent Flows
,”
Ann. Rev. Fluid Mech.
,
28
, pp.
11
43
.10.1146/annurev.fl.28.010196.000303
16.
Balachandar
,
S.
, and
Eaton
,
J. K.
,
2010
, “
Turbulent Dispersed Multiphase Flow
,”
Ann. Rev. Fluid Mech.
,
42
(
1
), pp.
111
133
.10.1146/annurev.fluid.010908.165243
17.
Apte
,
S. V.
,
Mahesh
,
K.
, and
Lundgren
,
T.
,
2008
, “
Accounting for Finite-Size Effect in Disperse Two-Phase Flow
,”
Int. J. Multiphase Flow
,
34
(
3
), pp.
260
271
.10.1016/j.ijmultiphaseflow.2007.10.005
18.
Spelt
,
P. D. M.
, and
Biesheivel
,
A.
,
1997
, “
On the Motion of Gas Bubbles in Homogeneous Isotropic Turbulence
,”
J. Fluid Mech.
,
336
, pp.
221
244
.10.1017/S0022112096004739
19.
Druzhinin
,
O. A.
, and
Elghobashi
,
S. E.
,
1998
, “
Direct Numerical Simulations of Bubble-Laden Turbulent Flows Using the Two-Fluid Formulation
,”
Phys. Fluids
,
10
(
3
), pp.
685
697
.10.1063/1.869594
20.
Bunner
,
B.
, and
Tryggvason
,
G.
,
2003
, “
Effect of Bubble Deformation on the Stability and Properties of Bubbly Flows
,”
J. Fluid Mech.
,
495
, pp.
77
118
.10.1017/S0022112003006293
21.
Brennen
,
C. E.
,
1995
,
Cavitation and Bubble Dynamics
,
Oxford University
,
New York
.
22.
Prosperetti
,
A.
,
Sundaresan
,
S.
,
Pannala
,
S.
, and
Zhang
,
D. Z.
,
2007
, “
Segregated Methods for Two-Fluid Models
,”
Computational Methods for Multiphase Flow
,
Cambridge University
,
New York
, pp.
320
385
.
23.
Ma
,
J.
,
Oberai
,
Drew
,
D. A.
,
Lahey
,
R. T.
, Jr.
, and
Moraga
,
F.
,
2010
, “
Two-Fluid Modeling of Bubbly Flows Around Surface Ships Using a Phenomenological Subgrid Air Entrainment Model
,”
Comput. Fluids
,
39
(
1
), pp.
77
86
.10.1016/j.compfluid.2009.07.004
24.
Ma
,
J.
,
Oberai
,
A.
,
Hyman
,
M.
,
Drew
,
D. A.
, and
Lahey
,
R. T.
, Jr.
,
2011
, “
Two-Fluid Modeling of Bubbly Flows Around Surface Ships Using a Phenomenological Subgrid Air Entrainment Model
,”
Comput. Fluids
,
52
, pp.
50
57
.10.1016/j.compfluid.2011.08.015
25.
Ma
,
J.
,
Oberai
,
A.
,
Drew
,
D. A.
, and
Lahey
,
R. T.
, Jr.
,
2012
, “
A Two-Way Coupled Polydispersed Two-Fluid Model for the Simulation of Air Entrainment Beneath a Plunging Liquid Jet
,”
ASME J. Fluids Eng.
,
134
(
10
), p.
101304
.10.1115/1.4007335
26.
Xiang
,
M.
,
Cheung
,
S.
,
Yeoh
,
G.
,
Zhang
,
W.
, and
Tu
,
J.
,
2011
, “
On the Numerical Study of Bubbly Flow Created by Ventilated Cavity in Vertical Pipe
,”
Int. J. Multiphase Flow
,
37
(
7
), pp.
756
768
.10.1016/j.ijmultiphaseflow.2011.01.014
27.
Raju
,
R.
,
Singh
,
S.
,
Hsiao
,
C.-T.
, and
Chahine
,
G. L.
,
2011
, “
Study of Pressure Wave Propagation in a Two-Phase Bubbly Mixture
,”
ASME J. Fluids Eng.
,
133
(
12
), p.
121302
.10.1115/1.4005263
28.
Gilmore
,
F. R.
,
1952
, “
The Growth and Collapse of a Spherical Bubble in a Viscous Compressible Liquid
,” California Institute of Technology, Hydraulic Laboratory, Report No. 26-4.
29.
Wardlaw
,
A.
, Jr.
, and
Luton
,
J. A.
,
2000
, “
Fluid–Structure Interaction for Close-in Explosions
,”
Shock Vib. J.
,
7
, pp.
265
275
.10.1155/2000/141934
30.
Wardlaw
,
A.
, Jr.
,
Luton
,
J. A.
,
Renzi
,
J. J.
, and
Kiddy
,
K.
,
2003
, “
Fluid–Structure Coupling Methodology for Undersea Weapons
,”
Fluid Structure Interaction II
,
WIT Press
,
Southampton, UK
, pp.
251
263
.
31.
Ma
,
J.
,
Singh
,
S.
,
Hsiao
,
C.-T.
,
Choi
,
J.-K.
, and
Chahine
,
G. L.
,
2012
, “
Spherical Bubble Dynamics in a Bubbly Medium
,”
International Conference on Numerical Methods in Multiscale Flows
, Philadelphia, PA, June 12–14.
32.
Ma
,
J.
,
Hsiao
,
C.-T.
, and
Chahine
,
G. L.
,
2012
, “
Bubble Dynamics in Bubbly Medium
,”
65th Annual Meeting of the APS Division of Fluid Dynamics
, San Diego, CA, Nov. 18–20.
33.
Ma
,
J.
,
Chahine
,
G. L.
, and
Hsiao
,
C.-T.
, “
Spherical Bubble Dynamics in a Bubbly Medium Using an Euler–Lagrange Model
,”
Chem. Eng. Sci.
, (unpublished).
34.
Hsiao
,
C.-T.
, and
Chahine
,
G. L.
,
2012
, “
Effect of a Propeller and Gas Diffusion on Bubble Nuclei Distribution in a Liquid
,”
J. Hydrodyn., Ser. B
,
24
(
6
), pp.
809
822
.10.1016/S1001-6058(11)60308-9
35.
Hsiao
,
C.-T.
, and
Chahine
,
G. L.
,
2004
, “
Prediction of Tip Vortex Cavitation Inception Using Coupled Spherical and Nonspherical Bubble Models and Navier–Stokes Computations
,”
J. Mar. Sci. Technol.
,
8
(
3
), pp.
99
108
.10.1007/s00773-003-0162-6
36.
Hsiao
,
C.-T.
, and
Chahine
,
G.
,
2008
, “
Numerical Study of Cavitation Inception Due to Vortex/Vortex Interaction in a Ducted Propulsor
,”
J. Ship. Res.
,
52
, pp.
114
123
.
37.
Wu
,
X.
,
Choi
,
J.-K.
,
Hsiao
,
C.-T.
, and
Chahine
,
G. L.
,
2010
, “
Bubble Augmented Waterjet Propulsion: Numerical and Experimental Studies
,”
Proceedings of 28th Symposium on Naval Hydrodynamics
, Pasadena, CA, Sept. 12–17, pp.
1
17
.
38.
Wu
,
X.
,
Choi
,
J.-K.
,
Singh
,
S.
,
Hsiao
,
C.-T.
, and
Chahine
,
G. L.
,
2012
, “
Experimental and Numerical Investigation of Bubble Augmented Waterjet Propulsion
,”
J. Hydrodyn.
,
24
(
5
), pp.
635
647
.10.1016/S1001-6058(11)60287-4
39.
Singh
,
S.
,
Choi
,
J.-K.
, and
Chahine
,
G. L.
,
2012
, “
Optimum Configuration of an Expanding-Contracting-Nozzle for Thrust Enhancement by Bubble Injection
,”
ASME J. Fluids Eng.
,
134
(
1
), p.
0113011
.10.1115/1.4005687
40.
Hsiao
,
C. T.
,
Wu
,
X.
,
Ma
,
J.
, and
Chahine
,
G. L.
,
2013
, “
Numerical and Experimental Study of Bubble Entrainment Due to a Horizontal Plunging Jet
,”
Int. Shipbuild. Prog.
,
60
, pp.
435
469
.
41.
van Wijngaarden
,
L.
,
1968
, “
On the Equations of Motion for Mixtures of Liquid and Gas Bubbles
,”
J. Fluid Mech.
,
33
(
3
), pp.
465
474
.10.1017/S002211206800145X
42.
van Wijngaarden
,
L.
,
1972
, “
One-Dimensional Flow of Liquids Containing Small Gas Bubbles
,”
Ann. Rev. Fluid Mech.
,
4
, pp.
369
396
.10.1146/annurev.fl.04.010172.002101
43.
Commander
,
K. W.
, and
Prosperetti
,
A.
,
1989
, “
Linear Pressure Waves in Bubbly Liquids: Comparison Between Theory and Experiments
,”
J. Acoust. Soc. Am.
,
85
(
2
), pp.
732
746
.10.1121/1.397599
44.
Brennen
,
C. E.
,
2005
,
Fundamentals of Multiphase Flows
,
Cambridge University
, New York.
45.
Awad
,
M. M.
, and
Muzzchka
,
Y. S.
,
2008
, “
Effective Property Models for Homogeneous Two Phase Flow
,”
Exp. Therm. Fluid Sci.
,
33
(
1
), pp.
106
113
.10.1016/j.expthermflusci.2008.07.006
46.
Ferrante
,
A.
, and
Elghobashi
,
S.
,
2004
, “
On the Physical Mechanisms of Drag Reduction in a Spatially Developing Turbulent Boundary Layer Laden With Microbubbles
,”
J. Fluid Mech.
,
503
, pp.
345
355
.10.1017/S0022112004007943
47.
Darmana
,
D.
,
Deen
,
N. G.
, and
Kuipers
,
J. A. M.
,
2006
, “
Parallelization of an Euler–Lagrange Model Using Mixed Domain Decomposition and a Mirror Domain Technique: Application to Disperse Gas–Liquid Two-Phase Flow
,”
J. Comput. Phys.
,
220
(
1
), pp.
216
248
.10.1016/j.jcp.2006.05.011
48.
Shams
,
E.
,
Finn
,
J.
, and
Apte
,
S. V.
,
2011
, “
A Numerical Scheme for Euler–Lagrange Simulation of Bubbly Flows in Complex Systems
,”
Int. J. Num. Methods Fluids
,
67
(
12
), pp.
1865
1898
.10.1002/fld.2452
49.
Chahine
,
G. L.
,
2009
, “
Numerical Simulation of Bubble Flow Interactions
,”
J. Hydrodyn.
,
21
(
3
), pp.
316
332
.10.1016/S1001-6058(08)60152-3
50.
Hsiao
,
C.-T.
,
Chahine
,
G. L.
, and
Liu
,
H.-L.
,
2003
, “
Scaling Effects on Prediction of Cavitation Inception in a Line Vortex Flow
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
53
60
.10.1115/1.1521956
51.
Johnson
,
V. E.
, and
Hsieh
,
T.
,
1966
, “
The Influence of the Trajectories of Gas Nuclei on Cavitation Inception
,”
6th Symposium on Naval Hydrodynamics
, Washington, DC, Sept. 28–Oct. 4, pp.
163
179
.
52.
Saffman
,
P.
,
1965
, “
The Lift on a Small Sphere in a Slow Shear Flow
,”
J. Fluid Mech.
,
22
(
2
), pp.
385
400
.10.1017/S0022112065000824
53.
Haberman
,
W. L.
, and
Morton
,
R. K.
,
1953
, “
An Experimental Investigation of the Drag and Shape of Air Bubbles Rising in Various Liquids
,” DTMB Report No. 802.
54.
Chorin
,
A. J.
,
1967
, “
A Numerical Method for Solving Incompressible Viscous Flow Problems
,”
J. Comput. Phys.
,
2
(
1
), pp.
12
26
.10.1016/0021-9991(67)90037-X
55.
Roe
,
P. L.
,
1981
, “
Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes
,”
J. Comput. Phys.
,
43
(
2
), pp.
357
372
.10.1016/0021-9991(81)90128-5
56.
Van Leer
,
B.
,
Thomas
,
J. L.
,
Roe
,
P. L.
, and
Newsome
,
R. W.
,
1987
, “
A Comparison of Numerical Flux Formulas for the Euler and Navier–Stokes Equation
,”
AIAA
Paper No. 87-1104-CP. 10.2514/6.87-1104-CP
57.
Chahine
,
G. L.
,
Hsiao
,
C.-T.
, and
Raju
,
R.
,
2014
, “
Scaling of Cavitation Bubble Cloud Dynamics on Propellers
,”
Advanced Experimental and Numerical Techniques for Cavitation Erosion Prediction
, Vol.
106
,
K. H.
Kim
,
G. L.
Chahine
,
J. P.
Franc
, and
A.
Karimi
, eds.,
Springer
,
Dordrecht, The Netherlands
, pp.
345
372
.
You do not currently have access to this content.