The flow behaviors of two-dimensional (2D) wet monodisperse and polydisperse foams are investigated by the quasi-static simulation. We set the same inlet velocity on the cross section of the foam channel and then focus on the elastic–plastic deformation of the 2D wet foam according to the strain caused by the foam flow. The gas fraction in foam is referred to as foam quality and the effects of foam quality on the shear modulus, bubble dynamics, and stress–strain properties are obtained by the simulation. In the elastic domain, the shear modulus of monodisperse foam decreases exponentially with foam quality, but for the polydisperse foam, the shear modulus tends to increase. The shear banding of the polydisperse foam appears in the low strain and disappears gradually as the strain and foam quality increase. We adopt shear rate to represent the change rate of average bubbles displacements versus y-coordinates and find that the distribution of shear rate in the y-direction changes with iteration. Additionally, energy of the foam is stored and dissipated with the elastic–plastic deformation of the foam. The average shear stress generated by the foam structure and the initial increment of normal stress difference caused by the elastic deformation increase with the increase of foam quality.

References

References
1.
Boomsma
,
K.
, and
Poulikakos
,
D.
,
2002
, “
The Effect of Compression and Pore Size Variations on the Liquid Flow Characteristics in Metal Foams
,”
ASME J. Fluids Eng.
,
124
(
1
), pp.
263
272
.10.1115/1.1429637
2.
Dukhan
,
N.
,
Picón-Feliciano
,
R.
, and
Álvarez-Hernández
,
Á. R.
,
2006
, “
Air Flow Through Compressed and Uncompressed Aluminum Foam: Measurements and Correlations
,”
ASME J. Fluids Eng.
,
128
(
5
), pp.
1004
1012
.10.1115/1.2236132
3.
Reidenbach
,
V. G.
,
Harris
,
P. C.
,
Lee
,
Y. N.
, and
Lord
,
D. L.
,
1986
, “
Rheological Study of Foam Fracturing Fluids Using Nitrogen and Carbon Dioxide
,”
SPE Prod. Eng.
,
1
(
1
), pp.
31
41
.10.2118/12026-PA
4.
Saint-Jalmes
,
A.
, and
Durian
,
D.
,
1999
, “
Vanishing Elasticity for Wet Foams: Equivalence With Emulsions and Role of Polydispersity
,”
J. Rheol.
,
43
(
6
), pp.
1411
1422
.10.1122/1.551052
5.
Bick
,
A. G.
,
Ristenpart
,
W. D.
,
van Nierop
,
E. A.
, and
Stone
,
H. A.
,
2011
, “
Mechanical Inhibition of Foam Formation Via a Rotating Nozzle
,”
ASME J. Fluids Eng.
,
133
(
4
), p.
044503
.10.1115/1.4003987
6.
Katgert
,
G.
,
Möbius
,
M. E.
, and
van Hecke
,
M.
,
2008
, “
Rate Dependence and Role of Disorder in Linearly Sheared Two-Dimensional Foams
,”
Phys. Rev. Lett.
,
101
(
5
), p.
058301
.10.1103/PhysRevLett.101.058301
7.
Mohammadigoushki
,
H.
, and
Feng
,
J. J.
,
2013
, “
Size Segregation in Sheared Two-Dimensional Polydisperse Foam
,”
Langmuir
,
29
(
5
), pp.
1370
1378
.10.1021/la304445f
8.
Mohammadigoushki
,
H.
,
Ghigliotti
,
G.
, and
Feng
,
J. J.
,
2012
, “
Anomalous Coalescence in Sheared Two-Dimensional Foam
,”
Phys. Rev. E
,
85
(
6
), p.
066301
.10.1103/PhysRevE.85.066301
9.
Weaire
,
D.
,
Coughlan
,
S.
, and
Fortes
,
A. M.
,
1995
, “
The Modeling of Liquid and Solid Foams
,”
J. Mater. Process. Technol.
,
55
(
3–4
), pp.
178
185
.10.1016/0924-0136(95)01951-0
10.
Jiang
,
Y.
,
Swart
,
P. J.
,
Saxena
,
A.
,
Asipauskas
,
M.
, and
Glazier
,
J. A.
,
1999
, “
Hysteresis and Avalanches in Two-Dimensional Foam Rheology Simulations
,”
Phys. Rev. E
,
59
(
5
), pp.
5819
5832
.10.1103/PhysRevE.59.5819
11.
Kermode
,
J. P.
, and
Weaire
,
D.
,
1990
, “
2D-FROTH: A Program for the Investigation of 2-Dimensional Froths
,”
Comput. Phys. Commun.
,
60
(
1
), pp.
75
109
.10.1016/0010-4655(90)90080-K
12.
Brakke
,
K. A.
,
1992
, “
The Surface Evolver
,”
Exp. Math.
,
1
(
2
), pp.
141
165
.10.1080/10586458.1992.10504253
13.
Durian
,
D. J.
,
1995
, “
Foam Mechanics at the Bubble Scale
,”
Phys. Rev. Lett.
,
75
(
26
), pp.
4780
4783
.10.1103/PhysRevLett.75.4780
14.
Langlois
,
V. J.
,
Hutzler
,
S.
, and
Weaire
,
D.
,
2008
, “
Rheological Properties of the Soft-Disk Model of Two-Dimensional Foams
,”
Phys. Rev. E
,
78
(
2
), p.
021401
.10.1103/PhysRevE.78.021401
15.
Okuzono
,
T.
, and
Kawasaki
,
K.
,
1995
, “
Intermittent Flow Behavior of Random Foams: A Computer Experiment on Foam Rheology
,”
Phys. Rev. E
,
51
(
2
), pp.
1246
1253
.10.1103/PhysRevE.51.1246
16.
Sun
,
Q.
, and
Hutzler
,
S.
,
2004
, “
Lattice Gas Simulations of Two-Dimensional Liquid Foams
,”
Rheol. Acta
,
43
(
5
), pp.
567
574
.10.1007/s00397-004-0417-0
17.
Weaire
,
D.
,
Bolton
,
F.
,
Herdtle
,
T.
, and
Aref
,
H.
,
1992
, “
The Effect of Strain Upon the Topology of a Soap Froth
,”
Phil. Mag. Lett.
,
66
(
6
), pp.
293
299
.10.1080/09500839208219048
18.
Weaire
,
D.
, and
Kermode
,
J.
,
1983
, “
Computer Simulation of a Two-Dimensional Soap Froth: I. Method and Motivation
,”
Phil. Mag. B
,
48
(
3
), pp.
245
259
.10.1080/13642818308228287
19.
Kern
,
N.
,
Weaire
,
D.
,
Martin
,
A.
,
Hutzler
,
S.
, and
Cox
,
S. J.
,
2004
, “
Two-Dimensional Viscous Froth Model for Foam Dynamics
,”
Phys. Rev. E
,
70
(
4
), p.
041411
.10.1103/PhysRevE.70.041411
20.
Vincent-Bonnieu
,
S.
,
Hohler
,
R.
, and
Cohen-Addad
,
S.
,
2006
, “
A Multiscale Model for the Slow Viscoelastic Response of Liquid Foams
,” e-print: arXiv preprint cond-mat/0609363.
21.
Kabla
,
A.
,
Scheibert
,
J.
, and
Debregeas
,
G.
,
2007
, “
Quasi-Static Rheology of Foams. Part 2. Continuous Shear Flow
,”
J. Fluid Mech.
,
587
, pp.
45
72
.10.1017/S0022112007007276
22.
Kabla
,
A.
, and
Debregeas
,
G.
,
2007
, “
Quasi-Static Rheology of Foams. Part 1. Oscillating Strain
,”
J. Fluid Mech.
,
587
, pp.
23
44
.10.1017/S0022112007007264
23.
Yuan
,
X.
, and
Edwards
,
S.
,
1995
, “
Flow Behaviour of Two-Dimensional Random Foams
,”
J. Non-Newtonian Fluid Mech.
,
60
(
2
), pp.
335
348
.10.1016/0377-0257(95)01393-0
24.
Gajbhiye
,
R. N.
, and
Kam
,
S. I.
,
2011
, “
Characterization of Foam Flow in Horizontal Pipes by Using Two-Flow-Regime Concept
,”
Chem. Eng. Sci.
,
66
(
8
), pp.
1536
1549
.10.1016/j.ces.2010.12.012
25.
Dollet
,
B.
, and
Graner
,
F.
,
2007
, “
Two-Dimensional Flow of Foam Around a Circular Obstacle: Local Measurements of Elasticity, Plasticity and Flow
,”
J. Fluid Mech.
,
585
, pp.
181
211
.10.1017/S0022112007006830
26.
Langlois
,
V. J.
,
2014
, “
The Two-Dimensional Flow of a Foam Through a Constriction: Insights From the Bubble Model
,”
J. Rheol.
,
58
(
3
), pp.
799
818
.10.1122/1.4872058
27.
Ivanov
, I
. B.
,
Dimitrov
,
A. S.
,
Nikolov
,
A. D.
, and
Kralchevsky
,
P. A.
,
1992
, “
Contact Angle, Film, and Line Tension of Foam Films. I. Stationary and Dynamic Contact Angle Measurements
,”
J. Colloid Interf. Sci.
,
151
(
2
), pp.
446
461
.10.1016/0021-9797(92)90493-6
28.
Cox
,
S. J.
, and
Whittick
,
E. L.
,
2006
, “
Shear Modulus of Two-Dimensional Foams: The Effect of Area Dispersity and Disorder
,”
Eur. Phys. J. Part E
,
21
(
1
), pp.
49
56
.10.1140/epje/i2006-10044-x
29.
Marion
,
G.
,
Sahnoun
,
S.
,
Mendiboure
,
B.
,
Dicharry
,
C.
, and
Lachaise
,
J.
,
1992
, “
Reflectometry Study of Interbubble Gas Transfer in Liquid Foams
,” Trends in Colloid and Interface Science VI,
Steinkopff, Heidelberg
,
Germany
, pp.
145
148
.10.1007/BFb0116266
30.
Kabla
,
A.
, and
Debrégeas
,
G.
,
2003
, “
Local Stress Relaxation and Shear Banding in a Dry Foam Under Shear
,”
Phys. Rev. Lett.
,
90
(
25
), pp.
258
303
.10.1103/PhysRevLett.90.258303
31.
Cox
,
S.
,
Weaire
,
D.
, and
Glazier
,
J. A.
,
2004
, “
The Rheology of Two-Dimensional Foams
,”
Rheol. Acta
,
43
(
5
), pp.
442
448
.10.1007/s00397-004-0378-3
32.
Cox
,
S.
,
2005
, “
A Viscous Froth Model for Dry Foams in the Surface Evolver
,”
Colloid Surf. A
,
263
(
1
), pp.
81
89
.10.1016/j.colsurfa.2004.12.061
33.
Harris
,
P. C.
,
1996
, “
High-Quality Foam Fracturing Fluids
,”
GTS: Gas Technology Symposium
,
Calgary, AB, Canada
, Apr. 28–May 1, pp.
265
273
.
You do not currently have access to this content.