The velocity field in a macroscale multi-inlet vortex reactor (MIVR) used in “flash nanoprecipitation (FNP)” process for producing functional nanoparticles was investigated using stereoscopic particle image velocimetry (SPIV). Based on the experimental data, a simple model was proposed to describe the average velocity field within the reactor. In the model, the axial and azimuthal velocities could be well described by the combination of two coflowing Batchelor vortices. In this model, six dimensionless coefficients are identified by nonlinear curve fitting, and their dependence on Reynolds number can be linearly described. This simple model is able to accurately predict the mean velocity field within the confined turbulent swirling flow based purely on Reynolds number.

References

References
1.
Liu
,
Y.
,
Cheng
,
C.
,
Liu
,
Y.
,
Prud'homme
,
R. K.
, and
Fox
,
R. O.
,
2008
, “
Mixing in a Multi-Inlet Vortex Mixer (MIVM) for Flash Nano-Precipitation
,”
Chem. Eng. Sci.
,
63
(
11
), pp.
2829
2842
.10.1016/j.ces.2007.10.020
2.
Johnson
,
B. K.
, and
Prud'homme
,
R. K.
,
2003
, “
Flash Nanoprecipitation of Organic Actives and Block Copolymers Using a Confined Impinging Jets Mixer
,”
Aust. J. Chem.
,
56
(
10
), pp.
1021
1024
.10.1071/CH03115
3.
Liu
,
Y.
,
Tong
,
Z.
, and
Prud'homme
,
R. K.
,
2008
, “
Stabilized Polymeric Nanoparticles for Controlled and Effecient Release of Bifenthrin
,”
Pest Manage. Sci.
,
64
(
8
), pp.
808
812
.10.1002/ps.1566
4.
Shen
,
H.
,
Hong
,
S.
,
Prud'homme
,
R. K.
, and
Liu
,
Y.
,
2011
, “
Self-Assembling Process of Flash Nanoprecipitation in a Multi-Inlet Vortex Mixer to Produce Drug-Loaded Polymeric Nanoparticles
,”
J. Nanopart. Res.
,
13
(
9
), pp.
4109
4120
.10.1007/s11051-011-0354-7
5.
Cheng
,
J. C.
,
Olsen
,
M. G.
, and
Fox
,
R. O.
,
2009
, “
A Microscale Multi-Inlet Vortex Nanoprecipitation Reactor: Turbulence Measurement and Simulation
,”
Appl. Phys. Lett.
,
94
, p.
204104
.10.1063/1.3125428
6.
Shi
,
Y.
,
Cheng
,
J. C.
,
Fox
,
R. O.
, and
Olsen
,
M. G.
,
2013
, “
Measurements of Turbulence in a Microscale Multi-Inlet Vortex Nanoprecipitation Reactor
,”
J. Micromech. Microeng.
,
23
(
7
), p.
075005
.10.1088/0960-1317/23/7/075005
7.
Saffman
,
P. G.
,
1992
,
Vortex Dynamics
,
Cambridge University Press
,
Cambridge, UK
.
8.
Batchelor
,
G. K.
,
1964
, “
Axial Flow in Trailing Line Vortices
,”
J. Fluid Mech.
,
20
, pp.
645
658
.10.1017/S0022112064001446
9.
Susa-Resiga
,
R.
,
Ciocan
,
G. D.
,
Anton
,
I.
, and
Avellan
,
F.
,
2006
, “
Analysis of the Swirling Flow Downstream a Francis Trubine Runner
,”
ASME J. Fluids Eng.
,
128
(
1
), pp.
177
189
.10.1115/1.2137341
10.
Prasad
,
A. K.
,
2000
, “
Stereoscopic Particle Image Velocimetry
,”
Exp. Fluids
,
29
, pp.
103
116
.10.1007/s003480000143
11.
Wieneke
,
B.
,
2005
, “
Stereo-PIV Using Self-Calibration on Particle Images
,”
Exp. Fluids
,
39
(
2
), pp.
267
280
.10.1007/s00348-005-0962-z
12.
Van Doorne
,
C.
, and
Westerweel
,
J.
,
2007
, “
Measurement of Laminar, Transitional and Turbulent Pipe Flow Using Stereoscopic-PIV
,”
Exp. Fluids
,
42
(
2
), pp.
259
279
.10.1007/s00348-006-0235-5
13.
Madabhushi
,
R. K.
, and
Vanka
,
S. P.
,
1991
, “
Large Eddy Simulation of Turbulencedriven Secondary Flow in a Square Duct
,”
Phys. Fluids A
,
3
, pp.
2734
2745
.10.1063/1.858163
14.
Ingvorsen
,
K. M.
,
Meyer
,
K. E.
,
Walther
,
J. H.
, and
Mayer
,
S.
,
2013
, “
Turbulent Swirling Flow in a Model of a Uniflow-Scavenged Two-Stroke Engine
,”
Exp. Fluids
,
54
(
3
), pp.
1494
1511
.10.1007/s00348-013-1494-6
15.
Liu
,
X.
, and
Katz
,
J.
,
2013
, “
Vortex-Corner Interactions in a Cavity Shear Layer Elucidated by Time-Resolved Measurements of the Pressure Field
,”
J. Fluid Mech.
,
728
, pp.
417
457
.10.1017/jfm.2013.275
16.
Kitoh
,
O.
,
1991
, “
Experimental Study of Turbulent Swirling Flow in a Straight Pipe
,”
J. Fluid Mech.
,
225
, pp.
445
479
.10.1017/S0022112091002124
You do not currently have access to this content.