The performance of grooves capable of reducing shear drag in laminar channel flow driven by a pressure gradient has been analyzed numerically. Only grooves with shapes that are easy to manufacture have been considered. Four classes of grooves have been studied: triangular grooves, trapezoidal grooves, rectangular grooves, and circular-segment grooves. Two types of groove placements have been considered: grooves that are cut into the surface (they can be created using material removal techniques) and grooves that are deposited on the surface (they can be created using material deposition techniques). It has been shown that the best performance is achieved when the grooves are aligned with the flow direction and are symmetric. For each class of grooves, there exists an optimal groove spacing, which results in the largest drag reduction. The largest drag reduction results from the use of trapezoidal grooves and the smallest results from the use of triangular grooves for the range of parameters considered in this work. Placing the same grooves on both walls increases the drag reduction by up to four times when comparing with grooves on one wall only. The predictions remain valid for any Reynolds number as long as the flow remains laminar.

References

References
1.
Mohammadi
,
A.
, and
Floryan
,
J. M.
,
2012
, “
Mechanism of Drag Generation by Surface Corrugation
,”
Phys. Fluids
,
24
(
1
), p.
013602
.10.1063/1.3675557
2.
Walsh
,
M. J.
, and
Weinstein
,
L. M.
,
1979
, “
Drag and Heat-Transfer Characteristics of Small Longitudinally Ribbed Surfaces
,”
AIAA J.
,
17
(
7
), pp.
770
771
.10.2514/3.61216
3.
Walsh
,
M. J.
,
1980
, “
Drag Characteristics of V-Groove and Transverse Curvature Riblets
,” Viscous Drag Reduction, Vol. 72, AIAA, Washington, DC, pp.
168
184
.
4.
Walsh
,
M. J.
,
1983
, “
Riblets as a Viscous Drag Reduction Technique
,”
AIAA J.
,
21
(
4
), pp.
485
486
.10.2514/3.60126
5.
García-Mayoral
,
R.
, and
Jiménez
,
J.
,
2011
, “
Drag Reduction by Riblets
,”
Philos. Trans. R. Soc. A
,
369
(
1940
), pp.
1412
1427
.10.1098/rsta.2010.0359
6.
Quadrio
,
M.
,
2011
, “
Drag Reduction in Turbulent Boundary Layers by In-Plane Wall Motion
,”
Philos. Trans. R. Soc. A
,
369
(
1940
), pp.
1428
1442
.10.1098/rsta.2010.0366
7.
Choi
,
K. S.
,
Jukes
,
T.
, and
Whalley
,
R.
,
2011
, “
Turbulent Boundary-Layer Control With Plasma Actuators
,”
Philos. Trans. R. Soc. A
,
369
(
1940
), pp.
1443
1458
.10.1098/rsta.2010.0362
8.
Papautsky
,
I.
,
Brazzle
,
J.
,
Ameel
,
T.
, and
Frazier
,
A. B.
,
1999
, “
Laminar Fluid Behavior in Microchannels Using Micropolar Fluid Theory
,”
Sens. Actuators A
,
73
(
1–2
), pp.
101
108
.10.1016/S0924-4247(98)00261-1
9.
Sobhan
,
C. B.
, and
Garimella
,
S. V.
,
2001
, “
A Comparative Analysis of Studies on Heat Transfer and Fluid Flow in Microchannels
,”
Microscale Thermophys. Eng.
,
5
(
4
), pp.
293
311
.10.1080/10893950152646759
10.
Morini
,
G. L.
,
2004
, “
Single-Phase Convective Heat Transfer in Microchannels: A Review of Experimental Results
,”
Int. J. Therm. Sci.
,
43
(
7
), pp.
631
651
.10.1016/j.ijthermalsci.2004.01.003
11.
Gamrat
,
G.
,
Favre-Marinet
,
M.
,
Le Person
,
S.
,
Bavière
,
R.
, and
Ayela
,
F.
,
2008
, “
An Experimental Study and Modeling of Roughness Effects on Laminar Flow in Microchannels
,”
J. Fluid Mech.
,
594
, pp.
399
423
.10.1017/S0022112007009111
12.
Choi
,
H.
,
Moin
,
P.
, and
Kim
,
J.
,
1991
, “
On the Effect of Riblets in Fully Developed Laminar Channel Flows
,”
Phys. Fluids A
,
3
(8), pp.
1892
1896
.10.1063/1.857918
13.
Chu
,
D.
, and
Karniadakis
,
G.
,
1993
, “
The Direct Numerical Simulation of Laminar and Turbulent Flow Over Riblets-Mounted Surfaces
,”
J. Fluid Mech.
,
250
, pp.
1
42
.10.1017/S0022112093001363
14.
Mohammadi
,
A.
, and
Floryan
,
J. M.
,
2013
, “
Pressure Losses in Grooved Channels
,”
J. Fluid Mech.
,
725
, pp.
23
54
.10.1017/jfm.2013.184
15.
Mohammadi
,
A.
, and
Floryan
,
J. M.
,
2013
, “
Groove Optimization for Drag Reduction
,”
Phys. Fluids
,
25
(11), p.
113601
.10.1063/1.4826983
16.
Rothstein
,
J. P.
,
2010
, “
Slip on Superhydrophobic Surfaces
,”
Annu. Rev. Fluid Mech.
,
42
, pp.
89
109
.10.1146/annurev-fluid-121108-145558
17.
Ou
,
J.
,
Perot
,
B.
, and
Rothstein
,
J. P.
,
2004
, “
Laminar Drag Reduction in Microchannels Using Ultrahydrophobic Surfaces
,”
Phys. Fluids
,
16
(
12
), pp.
4635
4643
.10.1063/1.1812011
18.
Ou
,
J.
, and
Rothstein
,
J. P.
,
2005
, “
Direct Velocity Measurements of the Flow Past Drag-Reducing Ultrahydrophobic Surfaces
,”
Phys. Fluids
,
17
(
10
), pp.
1
10
.10.1063/1.2109867
19.
Joseph
,
P.
,
Cottin-Bizonne
,
C.
,
Benoît
,
J.-M.
,
Ybert
,
C.
,
Journet
,
C.
,
Tabeling
,
P.
, and
Bocquet
,
L.
,
2006
, “
Slippage of Water Past Superhydrophobic Carbon Nanotube Forests in Microchannels
,”
Phys. Rev. Lett.
,
97
(
15
), pp.
1
4
.10.1103/PhysRevLett.97.156104
20.
Truesdell
,
R.
,
Mammoli
,
A.
,
Vorobieff
,
P.
,
van Swol
,
F.
, and
Brinker
,
C. J.
,
2006
, “
Drag Reduction on a Patterned Superhydrophobic Surface
,”
Phys. Rev. Lett.
,
97
(
4
), pp.
1
4
.10.1103/PhysRevLett.97.044504
21.
Hossain
,
M. Z.
,
Floryan
,
D.
, and
Floryan
,
J. M.
,
2012
, “
Drag Reduction Due to Spatial Thermal Modulations
,”
J. Fluid Mech.
,
713
, pp.
398
419
.10.1017/jfm.2012.465
22.
Floryan
,
J. M.
,
2012
, “
The Thermo-Superhydrophobic Effect
,” APS March Meeting 2012, Feb. 27–March 2, Boston, MA, Abstract No. BAPS.2012.MAR.X50.15.
23.
Mohammadi
,
A.
, and
Floryan
,
J. M.
,
2012
, “
Spectral Algorithm for the Analysis of Flows in Grooved Channels
,”
Int. J. Numer. Methods. Fluids
,
69
(
3
), pp.
606
638
.10.1002/fld.2577
24.
Canuto
,
C.
,
Hussaini
,
M. Y.
,
Quarteroni
,
A.
, and
Zang
,
T. A.
,
2006
,
Spectral Methods: Fundamentals in Single Domains
,
Springer-Verlag
,
Berlin, Germany
, pp.
61
62
.
You do not currently have access to this content.