Currently, there are three different methodologies for evaluating the aerodynamics of trains; full-scale measurements, physical modeling using wind-tunnel, and moving train rigs and numerical modeling using computational fluid dynamics (CFD). Moreover, different approaches and turbulence modeling are normally used within the CFD framework. The work in this paper investigates the consistency of two of these methodologies; the wind-tunnel and the CFD by comparing the measured surface pressure with the computed CFD values. The CFD is based on Reynolds-Averaged Navier–Stokes (RANS) turbulence models (five models were used; the Spalart–Allmaras (S–A), k-ε, k-ε re-normalization group (RNG), realizable k-ε, and shear stress transport (SST) k-ω) and two detached eddy simulation (DES) approaches; the standard DES and delayed detached eddy simulation (DDES). This work was carried out as part of a larger project to determine whether the current methods of CFD, model scale and full-scale testing provide consistent results and are able to achieve agreement with each other when used in the measurement of train aerodynamic phenomena. Similar to the wind-tunnel, the CFD approaches were applied to external aerodynamic flow around a 1/25th scale class 43 high-speed tunnel (HST) model. Comparison between the CFD results and wind-tunnel data were conducted using coefficients for surface pressure, measured at the wind-tunnel by pressure taps fitted over the surface of the train in loops. Four different meshes where tested with both the RANS SST k-ω and DDES approaches to form a mesh sensitivity study. The four meshes featured 18, 24, 34, and 52 × 106 cells. A mesh of 34 × 106 cells was found to provide the best balance between accuracy and computational cost. Comparison of the results showed that the DES based approaches; in particular, the DDES approach was best able to replicate the wind-tunnel results within the margin of uncertainty.

References

References
1.
Sterling
,
M.
,
Baker
,
C.
,
Bouferrouk
,
A.
,
Oneil
,
H.
,
Wood
,
S.
, and
Crosbie
,
E.
,
2008
, “
An Investigation of the Aerodynamic Admittances and Aerodynamic Weighting Functions of Trains
,”
J. Wind Eng. Ind. Aerodyn.
,
97
(
11–12
), pp.
512
522
.10.1016/j.jweia.2009.07.009
2.
Quinn
,
A.
, and
Hayward
,
M.
,
2008
, “
Full-Scale Aerodynamic Measurements Underneath a High Speed Train
,”
Proceedings of the BBAA VI
, Milano, Italy.
3.
Kwon
,
H. B.
, and
Park
,
C. S.
,
2006
, “
An Experimental Study on the Relationship Between Ballast Flying Phenomenon and Strong Wind Under High Speed Train
,”
Proceedings of the World Congress on Rail Research
, Montreal, QC, Canada.
4.
Baker
,
C. J.
,
Jones
,
J.
,
Lopez-Calleja
,
F.
, and
Munday
,
J.
,
2004
, “
Measurements of the Cross Wind Forces on Trains
,”
J. Wind Eng. Ind. Aerodyn.
,
92
(
7–8
), pp.
547
563
.10.1016/j.jweia.2004.03.002
5.
Yongle
,
L.
,
Hu
,
P.
,
Cai
,
C. S.
,
Zhang
,
M.
, and
Qiang
,
S.
,
2012
, “
Wind Tunnel Study of a Sudden Change of Train Wind Loads Due to the Wind Shielding Effects of Bridge Towers and Passing Trains
,”
J. Eng. Mech.
,
139
(
9
), pp.
1249
1259
.
6.
Gilbert
,
T.
,
Baker
,
C. J.
, and
Quinn
,
A.
,
2013
, “
Gusts Caused by High-Speed Trains in Confined Spaces and Tunnels
,”
J. Wind Eng. Ind. Aerodyn.
,
121
, pp.
39
48
.10.1016/j.jweia.2013.07.015
7.
Baker
,
C. J.
,
Dalley
,
S. J.
,
Johnson
,
T.
,
Quinn
,
A.
, and
Wright
,
N. G.
,
2001
, “
The Slipstream and Wake of a High-Speed Train
,”
Proc. Inst. Mech. Eng., Part F
,
215
(
2
), pp.
83
99
.10.1243/0954409011531422
8.
Hemida
,
H.
,
Baker
,
C.
, and
Gao
,
G.
,
2012
, “
The Calculation of Train Slipstreams Using Large-Eddy Simulation
,”
Proc. Inst. Mech. Eng., Part F
: Journal of Rail and Rapid Transit, 0954409712460982.
9.
Mahesh
,
K.
,
Constantinescu
,
G.
, and
Moin
,
P.
,
2004
, “
A Numerical Method for Large-Eddy Simulation in Complex Geometries
,”
J. Comput. Phys.
,
197
(
1
), pp.
215
240
.10.1016/j.jcp.2003.11.031
10.
Axerio-Cilies
,
J.
, and
Iaccarino
,
G.
,
2012
, “
An Aerodynamic Investigation of an Isolated Rotating Formula 1 Wheel Assembly
,”
ASME J. Fluids Eng.
,
134
(
12
), p.
121101
.10.1115/1.4007890
11.
Hemida
,
H.
, and
KrajnoviÄ
,
S.
,
2009
, “
Transient Simulation of the Aerodynamic Response of a Double-Deck Bus in Gusty Winds
,”
ASME J. Fluids Eng.
,
131
(
3
), p.
031101
.10.1115/1.3054288
12.
Forsythe
,
J. R.
,
Squires
,
K. D.
,
Wurtzler
,
K. E.
, and
Spalart
,
P. R.
,
2004
, “
Detached-Eddy Simulation of the F-15E at High Alpha
,”
J. Aircraft
4
(
2
), pp.
193
200
.10.2514/1.2111
13.
Hong-Sik
,
I.
, and
Zha
,
G.
,
2014
, “
Delayed Detached Eddy Simulation of Airfoil Stall Flows Using High Order Schemes
,”
ASME J. Fluids Eng.
,
136
(
11
), p.
111104
.10.1115/1.4027813
14.
Guilmineau
,
E.
,
Deng
,
G.
, and
Wackers
,
J.
,
2011
, “
Numerical Simulation With a DES Approach for Automotive Flows
,”
J. Fluids Struct.
,
27
(
5
), pp.
807
816
.10.1016/j.jfluidstructs.2011.03.010
15.
Maddox
,
S.
,
Squires
,
K. D.
,
Wurtzler
,
K. E.
, and
Forsythe
,
J. R.
,
2004
, “
Detached-Eddy Simulation of the Ground Transportation System
,”
The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains
,
Springer
,
Berlin/Heidelberg, Germany
, pp.
89
104
.
16.
Spalart
,
P.
,
Shur
,
M.
,
Strelets
,
M.
, and
Travin
,
A.
,
2010
Initial RANS and DDES of a Rudimentary Landing Gear
,”
Progress in Hybrid RANS-LES Modelling
,
Springer
,
Berlin/Heidelberg, Germany
, pp.
101
110
.
17.
Sima
,
M.
,
Gurr
,
A.
, and
Orellano
,
A.
,
2008
, “
Validation of CFD for the Flow Under a Train With 1: 7 Scale Wind Tunnel Measurements
,”
Proceedings of the BBAA VI International Colloquium on Bluff Bodies Aerodynamics and Applications
, Milano, Italy.
18.
Spalart
,
P. R.
,
Jou
,
W. H.
,
Strelets
,
M.
, and
Allmaras
,
S. R.
,
1997
, “
Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach
,”
Adv. DNS/LES
,
1
, pp.
4
8
.
19.
Hemida
,
H.
, and
KrajnoviÄ
,
S.
,
2008
, “
LES Study of the Influence of a Train-Nose Shape on the Flow Structures Under Cross-Wind Conditions
,”
ASME J. Fluids Eng.
,
130
(
9
), p.
091101
.10.1115/1.2953228
20.
Liu
,
J.
,
Zhang
,
J.
, and
Zhang
,
W.
,
2013
, “
Study on Characteristics of Unsteady Aerodynamic Loads of a High-Speed Train Under Crosswinds by Large Eddy Simulation
,”
J. China Railw. Soc.
,
6
, p.
004
.
21.
Krajnovic
,
S.
,
2009
, “
Exploring Flow Structures Around a Simplified ICE2 Train Subjected to a 30 Degree Side Wind Using LES
,”
Eng. Appl. Comput. Fluid Dyn.
,
3
(
1
), pp.
28
41
.
22.
Dong
,
S.
, and
Zheng
,
X.
,
2011
, “
Direct Numerical Simulation of Spiral Turbulence
,”
J. Fluid Mech.
,
668
, pp.
150
173
.10.1017/S002211201000460X
23.
Sengupta
,
T. K.
,
Bhaumik
,
S.
, and
Bhumkar
,
Y. G.
,
2012
, “
Direct Numerical Simulation of Two-Dimensional Wall-Bounded Turbulent Flows From Receptivity Stage
,”
Phys. Rev. E
,
85
(
2
), p.
026308
.10.1103/PhysRevE.85.026308
24.
Moser
,
R. D.
,
Kim
,
J.
, and
Mansour
,
N. N.
,
1999
, “
Direct Numerical Simulation of Turbulent Channel Flow Up to Re = 590
,”
Phys. Fluids
,
11
(
4
), pp.
943
945
.10.1063/1.869966
25.
Moore
,
G. E.
,
1998
, “
Cramming More Components Onto Integrated Circuits
,”
Proc. IEEE
,
86
(
1
), pp.
82
85
.10.1109/JPROC.1998.658762
26.
RWDI-Inc.
,
2012
,
Structual Wind Tunnel Assessments—High Speed Train
,
J.
Kilpatrick
, ed.,
RWDI
,
Bedfordshire, UK
.
27.
Spalart
,
P.
, and
Allmaras
,
S.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
Proceedings of the 30th Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings
, American Institute of Aeronautics and Astronautics.
28.
Jones
,
W. P.
, and
Launder
,
B.
,
1972
, “
The Prediction of Laminarization With a Two-Equation Model of Turbulence
,”
Int. J. Heat Mass Transfer
,
15
(
2
), pp.
301
314
.10.1016/0017-9310(72)90076-2
29.
Yakhot
,
V.
, and
Orszag
,
S. A.
,
1986
, “
Renormalization Group Analysis of Turbulence. I. Basic Theory
,”
J. Sci. Comput.
,
1
(
1
), pp.
3
51
.10.1007/BF01061452
30.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1994
, “
A New k-Epsilon Eddy Viscosity Model for High Reynolds Number Turbulent Flows: Model Development and Validation
,” NASA STI/Recon Technical Report No. 95, p.
11442
.
31.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
32.
Spalart
,
P. R.
,
Deck
,
S.
,
Shur
,
M. L.
,
Squires
,
K. D.
,
Strelets
,
M. KH.
, and
Travin
,
A.
,
2006
, “
A New Version of Detached-Eddy Simulation, Resistant to Ambiguous Grid Densities
,”
Theor. Comput. Fluid Dyn.
,
20
(
3
), pp.
181
195
.10.1007/s00162-006-0015-0
33.
BSI, En 14067-4:2005+A1,
2009
,
Part 4: Requirements and Test Procedures for Aerodynamics on Open Track
,
BSI
, London, UK.
34.
OpenCFD, Ltd.
, “
OpenFOAM
,” http://www.openfoam.com, Last Accessed Apr. 1, 2014.
35.
Patankar
,
S. V.
, and
Spalding
,
D. B.
,
1972
, “
A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows
,”
Int. J. Heat Mass Transfer
,
15
(
10
), pp.
1787
1806
.10.1016/0017-9310(72)90054-3
36.
Issa
,
R. I.
,
1986
, “
Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting
,”
J. Comput. Phys.
,
62
(
1
), pp.
40
65
.10.1016/0021-9991(86)90099-9
37.
Sweby
,
P. K.
,
1984
, “
High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws
,”
SIAM J. Numer. Anal.
,
21
(
5
), pp.
995
1011
.10.1137/0721062
38.
Baker
,
C.
,
2010
, “
The Flow Around High Speed Trains
,”
J. Wind Eng. Ind. Aerodyn.
,
98
(
6
), pp.
277
298
.10.1016/j.jweia.2009.11.002
39.
Jönsson
,
M.
,
2010
, “
Numerical Investigation of the Flow Underneath a Train and the Effect of Design Changes
,” Master thesis, Luleå University of Technology, Luleå, Sweden.
40.
Schatzmann
,
M.
,
Olesen
,
H. R.
, and
Franke
,
J.
,
2010
,
COST 732 Model Evaluation Case Studies: Approach and Results
,
COST Office
, Brussels, Belgium.
41.
Hertwig
,
D.
,
Efthimiou
,
G. C.
,
Bartzis
,
J. G.
, and
Leitl
,
B.
,
2012
, “
CFD-RANS Model Validation of Turbulent Flow in a Semi-Idealized Urban Canopy
,”
J. Wind Eng. Ind. Aerodyn.
,
111
, pp.
61
72
.10.1016/j.jweia.2012.09.003
42.
Buccolieri
,
R.
, and
Sabatino
,
S. D.
,
2011
, “
MUST Experiment Simulations Using CFD and Integral Models
,”
Int. J. Environ. Pollut.
,
44
(
1
), pp.
376
384
.10.1504/IJEP.2011.038439
43.
VDI,
2005
,
Environmental Meteorology—Prognostic Microscale Wind Field Models—Evaluation for Flow Around Buildings and Obstacles
, VDI 3738, Part 9,
Beuth Verlag
,
Berlin, Germany
.
You do not currently have access to this content.