Although gerotor pumps are used in a wide range of industrial applications, higher work pressure causes shock or collision among pump components, which leads to large stress fluctuations and shortened pump life expectancy. This paper therefore proposes a novel variable clearance design that diminishes such component collisions. After a geometric mathematical model is constructed of variable clearance rotors, a fluid analysis model is developed based on a relief groove design. Applying the model to two fixed clearance and three variable clearance designs demonstrates the effects of various fixed clearance sizes on gerotor pump performance and identifies the differences between fixed and variable clearance designs. The results support the feasibility of the proposed design: the appropriate variable clearance designs maintain robust flow characteristics and effectively reduce shock and collision among pump components, thereby reducing stress level, increasing stability, and extending the life expectancy of the gerotor pumps.

References

References
1.
Tsay
,
C. B.
, and
Yu
,
C. Y.
,
1990
, “
The Mathematical Model of Gerotor Pump Applicable to Its Characteristic Study
,”
J. Chin. Soc. Mech. Eng.
,
11
(
4
), pp.
385
391
.
2.
Beard
,
J. E.
,
Hall
,
A. S.
, and
Soedel
,
W.
,
1991
, “
Comparison of Hypotrochoidal and Epitrochoidal Gerotors
,”
ASME J. Mech. Des.
,
113
(
2
), pp.
133
141
.10.1115/1.2912761
3.
Beard
,
J. E.
,
Yannitell
,
D. W.
, and
Pennock
,
G. R.
,
1992
, “
The Effect of the Generating Pin Size and Placement on the Curvature and Displacement of Epitrochoidal Gerotors
,”
Mech. Mach. Theory
,
27
(
4
), pp.
373
389
.10.1016/0094-114X(92)90030-L
4.
Shung
,
J. B.
, and
Pennock
,
G. R.
,
1994
, “
Geometry for Trochoidal-Type Machines With Conjugate Envelopes
,”
Mech. Mach. Theory
,
29
(
1
), pp.
25
42
.10.1016/0094-114X(94)90017-5
5.
Litvin
,
F. L.
, and
Feng
,
P. H.
,
1996
, “
Computerized Design and Generation of Cycloidal Gearings
,”
Mech. Mach. Theory
,
31
(
7
), pp.
891
911
.10.1016/0094-114X(95)00115-F
6.
Vecchiato
,
D.
,
Demenego
,
A.
,
Argyris
,
J.
, and
Litvin
,
F. L.
,
2001
, “
Geometry of a Cycloidal Pump
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
18–19
), pp.
2309
2330
.10.1016/S0045-7825(00)00236-X
7.
Litvin
,
F. L.
,
Demenego
,
A.
, and
Vecchiato
,
D.
,
2001
, “
Formation by Branches of Envelope to Parametric Families of Surfaces and Curves
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
35–36
), pp.
4587
4608
.10.1016/S0045-7825(00)00334-0
8.
Demenego
,
A.
,
Vecchiato
,
D.
,
Litvin
,
F. L.
,
Nervegna
,
N.
, and
Manco
,
S.
,
2002
, “
Design and Simulation of Meshing of a Cycloidal Pump
,”
Mech. Mach. Theory
,
37
(
3
), pp.
311
332
.10.1016/S0094-114X(01)00074-X
9.
Ivanović
,
L.
,
Devedžić
,
G.
,
Ćuković
,
S.
, and
Mirić
,
N.
,
2012
, “
Modeling of the Meshing of Trochoidal Profiles With Clearances
,”
ASME J. Mech. Des.
,
134
(
4
), p.
041003
.10.1115/1.4005621
10.
Mimmi
,
G. C.
, and
Pennacchi
,
P. E.
,
2000
, “
Non-Undercutting Conditions in Internal Gears
,”
Mech. Mach. Theory
,
35
(
4
), pp.
477
490
.10.1016/S0094-114X(99)00028-2
11.
Hwang
,
Y. W.
, and
Hsieh
,
C. F.
,
2007
, “
Geometric Design Using Hypotrochoid and Non-Undercutting Conditions for an Internal Cycloidal Gear
,”
ASME J. Mech. Des.
,
129
(
4
), pp.
413
420
.10.1115/1.2437806
12.
Hsieh
,
C. F.
, and
Hwang
,
Y. W.
,
2007
, “
Geometric Design for a Gerotor Pump With High Area Efficiency
,”
ASME J. Mech. Des.
,
129
(
12
), pp.
1269
1277
.10.1115/1.2779887
13.
Hsieh
,
C. F.
,
2009
, “
Influence of Gerotor Performance in Varied Geometrical Design Parameters
,”
ASME J. Mech. Des.
,
131
(
12
), p.
121008
.10.1115/1.4000484
14.
Yan
,
J.
,
Yang
,
D. C. H.
, and
Tong
,
S. H.
,
2009
, “
A New Gerotor Design Method With Switch Angle Assignability
,”
ASME J. Mech. Des.
,
131
(
1
), p.
011006
.10.1115/1.3013442
15.
Tong
,
S. H.
,
Yan
,
J.
, and
Yang
,
D. C. H.
,
2009
, “
Design of Deviation-Function Based Gerotors
,”
Mech. Mach. Theory
,
44
(
8
), pp.
1595
1606
.10.1016/j.mechmachtheory.2009.01.001
16.
Yang
,
D. C. H.
,
Yan
,
J.
, and
Tong
,
S. H.
,
2010
, “
Flowrate Formulation of Deviation Function Based Gerotor Pumps
,”
ASME J. Mech. Des.
,
132
(
6
), p.
064503
.10.1115/1.4001595
17.
Choi
,
T. H.
,
Kim
,
M. S.
,
Lee
,
G. S.
,
Jung
,
S. Y.
,
Bae
,
J. H.
, and
Kim
,
C.
,
2012
, “
Design of Rotor for Internal Gear Pump Using Cycloid and Circular-Arc Curves
,”
ASME J. Mech. Des.
,
134
(
1
), p.
011005
.10.1115/1.4004423
18.
Paffoni
,
B.
,
2003
, “
Pressure and Film Thickness in a Trochoidal Hydrostatic Gear Pump
,”
Proc. Inst. Mech. Eng., Part G
,
217
(
4
), pp.
179
187
.10.1243/095441003769700744
19.
Paffoni
,
B.
,
Progri
,
R.
, and
Gras
,
R.
,
2004
, “
Teeth Clearance Effects Upon Pressure and Film Thickness in a Trochoidal Hydrostatic Gear Pump
,”
Proc. Inst. Mech. Eng.
, Part G,
218
(
4
), pp.
247
256
.10.1243/0954410041872799
20.
Gamez-Montero
,
P. J.
,
Castilla
,
R.
,
Mujal
,
R.
,
Khamashta
,
M.
, and
Codina
,
E.
,
2009
, “
GEROLAB Package System: Innovative Tool to Design a Trochoidal-Gear Pump
,”
ASME J. Mech. Des.
,
131
(
7
), p.
074502
.10.1115/1.3125889
21.
Gamez-Montero
,
P. J.
,
Garcia-Vilchez
,
M.
,
Raush
,
G.
,
Freire
,
J.
, and
Codina
,
E.
,
2012
, “
Teeth Clearance and Relief Grooves Effects in a Trochoidal-Gear Pump Using New Modules of GeroLAB
,”
ASME J. Mech. Des.
,
134
(
5
), p.
054502
.10.1115/1.4006440
22.
Gamez-Montero
,
P. J.
,
Castilla
,
R.
,
Campo
,
D. del.
,
Erturk
,
N.
,
Raush
,
G.
, and
Codina
,
E.
,
2012
, “
Influence of the Interteeth Clearances on the Flow Ripple in a Gerotor Pump for Engine Lubrication
,”
Proc. Inst. Mech. Eng., Part D
,
226
(
7
), pp.
903
942
.10.1177/0954407011431545
23.
Hsieh
,
C. F.
,
2012
, “
Fluid and Dynamics Analyses of a Gerotor Pump Using Various Span Angle Designs
,”
ASME J. Mech. Des.
,
134
(
12
), p.
121003
.10.1115/1.4007703
24.
Daisuke
,
O.
,
Naoki
,
I.
,
Shinya
,
A.
, and
Harumitsu
,
S.
,
2004
, “
Internal Gear Pump
,” Patent No. EP-1,462,653 A1.
25.
Litvin
,
F. L.
,
1994
,
Gear Geometry and Applied Theory
,
Prentice Hall
,
New York
.
26.
Ding
,
H.
,
Visser
,
F. C.
,
Jiang
,
Y.
, and
Furmanczyk
,
M.
,
2011
, “
Demonstration and Validation of a 3D CFD Simulation Tool Predicting Pump Performance and Cavitation for Industrial Applications
,”
ASME J. Fluids Eng.
,
133
(
1
), p.
011101
.10.1115/1.4003196
27.
Frosina
,
E.
,
Senatore
,
A.
,
Buono
,
D.
,
Monterosso
,
F.
,
Olivetti
,
M.
,
Arnone
,
L.
, and
Santato
,
L.
,
2013
, “
A Tridimensional CFD Analysis of the Lubrication Circuit of a Non-Road Application Diesel Engine
,”
SAE
Paper No. 2013-24-0130. 10.4271/2013-24-0130
28.
Frosina
,
E.
,
Senatore
,
A.
,
Buono
,
D.
,
Manganelli
,
M. U.
, and
Olivetti
,
M.
,
2014
, “
A Tridimensional CFD Analysis of the Oil Pump of an High Performance Motorbike Engine
,”
Energy Procedia
,
45
, pp.
938
948
.10.1016/j.egypro.2014.01.099
29.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.10.1016/0045-7825(74)90029-2
30.
Singhal
,
A. K.
,
Athavale
,
M. M.
,
Li
,
H. Y.
, and
Jiang
,
Y.
,
2002
, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
617
624
.10.1115/1.1486223
31.
Khaled
,
M. B.
, and
Moh'dA
,
A. N.
,
2009
, “
2D Navier–Stokes Simulations of Microscale Viscous Pump With Slip Flow
,”
ASME J. Fluids Eng.
,
131
(
5
), p.
051105
.10.1115/1.3155992
32.
Yu
,
W. S.
,
Thompson
,
D. E.
, and
Lakshminarayana
,
B.
,
1996
, “
Computation of Three-Dimensional Viscous Flow in High Reynolds Number Pump Guide Vane
,”
ASME J. Fluids Eng.
,
118
(
4
), pp.
698
705
.10.1115/1.2835498
33.
Lefebvre
,
P. J.
, and
Barker
,
W. P.
,
1995
, “
Centrifugal Pump Performance During Transient Operation
,”
ASME J. Fluids Eng.
,
117
(
1
), pp.
123
128
.10.1115/1.2816801
34.
Zierke
,
W. C.
,
Straka
,
W. A.
, and
Taylor
,
P. D.
,
1995
, “
An Experimental Investigation of the Flow Through an Axial-Flow Pump
,”
ASME J. Fluids Eng.
,
117
(
3
), pp.
485
490
.10.1115/1.2817288
35.
Daniel
,
K.
,
Ronan
,
G.
, and
Jeff
,
P.
,
2009
, “
An Experimental Investigation of the Flow Fields Within Geometrically Similar Miniature-Scale Centrifugal Pumps
,”
ASME J. Fluids Eng.
,
131
(
10
), p.
101101
.10.1115/1.3176985
36.
Zhang
,
D.
,
Perng
,
C. Y.
, and
Laverty
,
M.
,
2006
, “
Gerotor Oil Pump Performance and Flow/Pressure Ripple Study
,”
SAE
Paper No. 2006-01-0359. 10.4271/2006-01-0359
You do not currently have access to this content.