This study utilizes two modern computational fluid dynamics (CFD) software packages (ansys®cfx® and ansys®fluent®) to analyze the basic geometric factors affecting the efficiency of a typical impulse turbine injector. A design of experiments (DOEs) study is used to look at the impact of four primary nozzle and spear design parameters on the injector losses over a range of inlet pressures. Improved injector designs for both solvers are suggested based on the results and comparisons are made. The results for both CFD tools suggest that steeper injector nozzle and spear angles than current literature describes will reduce the losses by up to 0.6%.

References

References
1.
British Hydropower Association (BHA)
,
2010
, “
Hydropower: Opportunities, Challenges & Sharing Best Practice. The British Hydropower Association Perspective
,” Last accessed Apr. 1, 2014, http://www.ciwem.org/media/142437/The%20British%20Hydropower%20Association%20Perspective.pdf
2.
Pelton
,
L. A.
,
1880
, U.S. Patent No. 223,692.
3.
Crewdson
,
E.
,
1920
, U.K. Patent No. 155,175.
4.
Gilkes
,
2014
, “
Gilkes Turgo Impulse Hydro Turbine
,” Last accessed Apr. 1, 2014, http://www.gilkes.com/user_uploads/turgo%20paper2.pdf
5.
Lancaster University Renewable Energy Group (LUREG)
,
2014
, “
Hydro Resource Evaluation Tool: Engineering Options
,” Last accessed Apr. 1, 2014, http://www.engineering.lancs.ac.uk/lureg/nwhrm/engineering/index.php?#tab
6.
Perrig
,
A.
,
Farhat
,
M.
, and
Avellan
,
F.
,
2007
, “
High Speed Flow Visualisation of an Impinging Jet on a Pelton Turbine Bucket
,”
ASME
Paper No. FEDSM2007-37628. 10.1115/FEDSM2007-37628
7.
Perrig
,
A.
,
Avellan
,
F.
,
Kueny
,
J.-L.
,
Farhat
,
M.
, and
Parkinson
,
E.
,
2006
, “
Flow in a Pelton Turbine Bucket: Numerical and Experimental Investigations
,”
ASME J. Fluids Eng.
,
128
(
2
), pp.
350
358
.10.1115/1.2170120
8.
Perrig
,
A.
,
Farhat
,
M.
,
Avellan
,
F.
,
Parkinson
,
E.
,
Garcin
,
H.
,
Bissel
,
C.
,
Valle
,
M.
, and
Favre
,
J.
,
2004
, “
Numerical Flow Analysis in a Pelton Turbine Bucket
,”
Proceedings of the 22nd IAHR Symposium on Hydraulic Machinery and Systems
, Paper No. LMH-CONF-2004-002.
9.
Fiereder
,
R.
,
Riemann
,
S.
, and
Schilling
,
R.
,
2010
, “
Numerical and Experimental Investigation of the 3D Free Surface Flow in a Model Pelton Turbine
,” IOP Conference Series: Earth and Environmental Science, Timişoara, Romania, Sept. 20–24.
10.
Jost
,
D.
,
Lipej
,
A.
, and
Meznar
,
P.
,
2008
, “
Numerical Prediction of Efficiency, Cavitation and Unsteady Phenomena in Water Turbines
,”
ASME
Paper No. ESDA2008-59563. 10.1115/ESDA2008-59563
11.
Jošt
,
D.
,
Mežnar
,
P.
, and
Lipej
,
A.
,
2010
, “
Numerical Prediction of Pelton Turbine Efficiency
,” IOP Conference Series: Earth and Environmental Science, Timişoara, Romania, Sept. 20–24, Vol. 12, p.
012080
.
12.
Anagnostopoulos
,
J. S.
,
Koukouvinis
,
Ph. K.
,
Stamatelos
,
F. G.
, and
Papantonis
,
D. E.
,
2012
, “
Optimal Design and Experimental Validation of a Turgo Model Hydro Turbine
,”
ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis
,
ASME
Paper No. ESDA2012-82565. 10.1115/ESDA2012-82565
13.
Koukouvinis
,
Ph. K.
,
Anagnostopoulos
,
J. S.
, and
Papantonis
,
D. E.
,
2011
, “
SPH Method Used for Flow Predictions at a Turgo Impulse Turbine: Comparison With Fluent
,”
World Acad. Sci. Eng. Tech.
,
79
(
55
), pp.
659
666
.
14.
Gupta
,
V.
, and
Prasad
,
V.
,
2012
, “
Numerical Investigations for Jet Flow Characteristics on Pelton Turbine Bucket
,”
Int. J. Emerg. Technol. Adv. Eng.
,
2
(
7
), pp.
364
370
.10.1.1.413.8622
15.
Rossetti
,
A.
,
Pavesi
,
G.
,
Ardizzon
,
G.
, and
Santolin
,
A.
,
2014
, “
Numerical Analyses of Cavitating Flow in a Pelton Turbine
,”
ASME J. Fluids Eng.
,
136
(
8
), p.
081304
.10.1115/1.4027139
16.
Correa
,
J.
,
De Andrade
,
J.
, and
Asuaje
,
M.
,
2012
, “
A Preliminary Analysis of a Turgo Type Turbine CFD Simulation Designed With an Integrated Dimensional Methodology
,”
ASME
Paper No. FEDSM2012-72018.10.1115/FEDSM2012-72018
17.
Correa
,
J.
,
De Andrade
,
J.
,
Croquer
,
S.
,
Jeanty
,
F.
, and
Asuaje
,
M.
,
2012
, “
Design Procedure for a Turgo Type Turbine Using a Three-Dimensional Potential Flow
,”
ASME
Paper No. GT2012-68807. 10.1115/GT2012-68807
18.
Aggidis
,
G. A.
, and
Židonis
,
A.
,
2014
, “
Hydro Turbine Prototype Testing and Generation of Performance Curves: Fully Automated Approach
,”
Renewable Energy
,
71
, pp.
433
441
.10.1016/j.renene.2014.05.043
19.
Židonis
,
A.
,
Panagiotopoulos
,
A.
,
Aggidis
,
G. A.
,
Anagnostopoulos
,
J. S.
, and
Papantonis
,
D. E.
,
2014
, “
Parametric Optimisation of Two Pelton Turbine Runner Designs Using Computational Fluid Dynamics
,”
J. Hydrodyn., Ser. B
(in press).
20.
Klemetsen
,
L. E.
,
2010
, “
An Experimental and Numerical Study of the Free Surface Pelton Bucket Flow
,” M.Sc. thesis, Norwegian University of Science and Technology, Trondheim, Norway.
21.
Perrig
,
A.
,
2007
, “
Hydrodynamics of the Free Surface Flow in Pelton Turbine Buckets
,” Ph.D. thesis, Ecole polytechnique federale de Lausanne, Lausanne, Switzerland.
22.
Veselý
,
J.
, and
Varner
,
M.
,
2001
, “
A Case Study of Upgrading of 62.5 MW Pelton Turbine
,”
Proceedings of the International Conference
, IAHR.
23.
Peron
,
M.
,
Parkinson
,
E.
,
Geppert
,
L.
, and
Staubli
,
T.
,
2008
, “
Importance of Jet Quality on Pelton Efficiency and Cavitation
,”
Proceedings of the IGHEM
, International Conference on Hydraulic Efficiency Measurements, Milan, Italy, Sept. 3–6, pp. 1–9.
24.
Patel
,
K.
,
Patel
,
B.
,
Yadav
,
M.
, and
Foggia
,
T.
,
2010
, “
Development of Pelton Turbine Using Numerical Simulation
,” IOP Conference Series: Earth and Environmental Science, Timişoara, Romania, Sept. 20–24, Vol. 12, p.
012048
.
25.
Gass
,
M.
,
2002
, “
Modification of Nozzles for the Improvement of Efficiency of Pelton Type Turbines
,”
Proceedings of the HydroVision Conference
.
26.
Staubli
,
T.
, and
Hauser
,
H. P.
,
2004
, “
Flow Visualization-Adiagnosis Tool for Pelton turbines
,”
Proceedings of the IGHEM 2004
, Lucerne, Switzerland, July 14–16, pp.
1
9
.
27.
Zhang
,
Zh.
, and
Casey
,
M.
,
2007
, “
Experimental Studies of the Jet of a Pelton Turbine
,”
Proc. Inst. Mech. Eng., Part A
,
221
(
8
), pp.
1181
1192
.10.1243/09576509JPE408
28.
Ansys®,
2010
, “
ansys CFX Powerful Computational Fluid Dynamics Software for Process and Product Design Optimization
,” Last accessed Apr. 1, 2014, http://www.ansys.com/staticassets/ansys/staticassets/resourcelibrary/brochure/ansys-cfx-brochure.pdf
29.
Ansys®
,
2011
, “
The ansys Fluent Package Combines Deep Physics and Years of Simulation Development Expertise to Solve CFD Challenges—Right Out of the Box
,” Last accessed Apr. 1, 2014, http://www.ansys.com/staticassets/ansys/staticassets/resourcelibrary/brochure/ansys-fluent-brochure-14.0.pdf
30.
Barstad
,
L. F.
,
2012
, “
CFD Analysis of a Pelton Turbine
,” M.Sc. thesis, NTNU, Norwegian University of Science and Technology.
31.
Zoppe
,
B.
,
Pellone
,
Ch.
,
Maître
,
Th.
, and
Leroy
,
P.
,
2006
, “
Flow Analysis Inside a Pelton Turbine Bucket
,”
ASME J. Turbomach.
,
128
(
3
), pp.
500
511
.10.1115/1.2184350
32.
Ansys®
,
2010
, “
ansys CFX-Pre User's Guide
,” Last accessed Apr. 1, 2014, ftp://ftp.stru.polimi.it/incoming/Mirzazadeh/cfx%20docs/cfx_pre.pdf
33.
Ansys®
,
2011
, “
ansys Fluent User's Guide
,” Last Accessed Apr. 1, 2014, http://cdlab2.fluid.tuwien.ac.at/LEHRE/TURB/Fluent.Inc/v140/flu_ug.pdf
34.
Thake
,
J.
,
2000
, The Micro-Hydro Pelton Turbine Manual: Design, Manufacture and Installation for Small-Scale Hydro-Power, ITDG Publishing, London, UK.
35.
Stat-Ease®
,
2013
, “
design-expert® 9 Software
,” Last accessed Apr. 1, 2014, http://www.statease.com/dx9.html
36.
Nesiadis
,
A. V.
,
Anagnostopoulos
,
J. S.
, and
Papantonis
,
D. E.
,
2013
, “
Study of the Injector Design in Impulse Hydro Turbines
,”
Proceedings of the 11TH ICNAAM 2013
, ICNAAM 2013, Rhodes, Greece, Sept. 21–27, Vol.
1558
, pp.
2297
2300
.
37.
Nechleba
,
M.
,
1957
,
Hydraulic Turbines, Their Design and Equipment
,
Artia, Prague
,
Czech Republic
.
You do not currently have access to this content.