Recently several works have been published on numerical simulation of an external gear pump (EGP). Such kinds of pumps are simple and relatively inexpensive, and are frequently used in fluid power applications, such as fluid power in aeronautical, mechanical, and civil engineering. Nevertheless, considerable effort is being undertaken to improve efficiency and reduce noise and vibration produced by the flow and pressure pulsations. Numerical simulation of an EGP is not straightforward principally for two main reasons. First, the gearing mechanism between gears makes it difficult to handle a dynamic mesh without a considerable deterioration of mesh quality. Second, the dynamic metal–metal contact simulation is important when high pressure outflow has to be reproduced. The numerical studies published so far are based on a two-dimensional (2D) approximation. The aim of the present work is to contribute to the understanding of the fluid flow inside an EGP by means of a complete three-dimensional (3D) parallel simulation on a cluster. The 3D flow is simulated in a linux cluster with a solver developed with the openfoam Toolbox. The hexahedral mesh quality is maintained by periodically replacing the mesh and interpolating the physical magnitudes fields. The meshing contact point is simulated with the viscous wall approach, using a viscosity model based on wall proximity. The results for the flow rate ripples show a similar behavior to that obtained with 2D simulations. However, the flow presents important differences inside the suction and the discharge chambers, principally in the regions of the pipes' connection. Moreover, the decompression slot below the gearing zone, which can not be simulated with a 2D approximation, enables a more realistic simulation of a contact ratio greater than 1. The results are compared with experimental measurements recently published.

References

References
1.
Bruce
,
D.
,
Wilson
,
M.
, and
Generalis
,
S.
,
1997
, “
Flow Field Analysis of Both the Trilobal Element and Mixing Disc Zones Within a Closely Intermeshing, Co-Rotating Twin-Screw Extruder
,”
Int. Polym. Process.
,
12
(
4
), pp.
323
330
.10.3139/217.970323
2.
Voorde
,
J. V.
,
Vierendeels
,
J.
, and
Dick
,
E.
,
2004
, “
Development of a Laplacian-Based Mesh Generator for ALE Calculations in Rotary Volumetric Pumps and Compressors
,”
Comput. Methods Appl. Mech. Eng.
,
193
(
39–41
), pp.
4401
4415
.10.1016/j.cma.2003.12.063
3.
Ivantysyn
,
J.
, and
Ivantysynova
,
M.
,
2001
,
Hydrostatic Pumps and Motors
,
Akademia Books International
,
New Delhi, India
.
4.
Eaton
,
M.
,
Keogh
,
P. S.
, and
Edge
,
K. A.
,
2006
, “
The Modeling, Prediction, and Experimental Evaluation of Gear Pump Meshing Pressures With Particular Reference to Aero-Engine Fuel Pumps
,”
Proc. Inst. Mech. Eng., Part I
,
220
(
15
), pp.
365
379
10.1243/09596518JSCE183.
5.
Borghi
,
M.
,
Milani
,
M.
,
Paltrinieri
,
F.
, and
Zardin
,
B.
,
2005
, “
Pressure Transients in External Gear Pumps and Motors Meshing Volumes
,” SAE Technical Paper No. 2005-01-3619.
6.
Wang
,
S.
,
Sakurai
,
H.
, and
Kasarekar
,
A.
,
2011
, “
The Optimal Design in External Gear Pumps and Motors
,”
IEEE/ASME Trans. Mechatronics
,
16
(
5
), pp.
945
952
.10.1109/TMECH.2010.2058860
7.
Ohta
,
H.
,
Kurita
,
M.
, and
Kishi
,
K.
,
2014
, “
Effects of Contact Ratio on Transmission Errors of Trochoidal Gears
,”
ASME J. Tribol.
,
136
(
3
), p.
031101
.10.1115/1.4027130
8.
Manring
,
N. D.
, and
Kasaragadda
,
S. B.
,
2003
, “
The Theoretical Flow Ripple of an External Gear Pump
,”
ASME J. Dyn. Syst., Meas., Control
,
125
(
3
), pp.
396
404
.10.1115/1.1592193
9.
Strasser
,
W.
,
2007
, “
CFD Investigation of Gear Pump Mixing Using Deforming/Agglomerating Mesh
,”
ASME J. Fluids Eng.
,
129
(
4
), pp.
476
484
.10.1115/1.2436577
10.
Castilla
,
R.
,
Gamez-Montero
,
P.
,
Ertürk
,
N.
,
Vernet
,
A.
,
Coussirat
,
M.
, and
Codina
,
E.
,
2010
, “
Numerical Simulation of Turbulent Flow in the Suction Chamber of a Gearpump Using Deforming Mesh and Mesh Replacement
,”
Int. J. Mech. Sci.
,
52
(
10
), pp.
1334
1342
.10.1016/j.ijmecsci.2010.06.009
11.
Ghazanfarian
,
J.
, and
Ghanbari
,
D.
,
2014
, “
Computational Fluid Dynamics Investigation of Turbulent Flow Inside a Rotary Double External Gear Pump
,”
ASME J. Fluids Eng.
,
137
(
2
), p.
021101
.10.1115/1.4028186
12.
Magnusson
,
J.
,
2011
, “
Numerical Analysis of the Lubricant Gap in External Gear Pumps Considering Micro Level Surface Features
,” Master's thesis, Chalmers University of Technology, Göteborg, Sweden.
13.
Dhar
,
S.
, and
Vacca
,
A.
,
2013
, “
A Fluid Structure Interaction-EHD Model of the Lubricating Gaps in External Gear Machines: Formulation and Validation
,”
Tribol. Int.
,
62
, pp.
78
90
.10.1016/j.triboint.2013.02.008
14.
Dhar
,
S.
, and
Vacca
,
A.
,
2012
, “
A Novel CFD—Axial Motion Coupled Model for the Axial Balance of Lateral Bushings in External Gear Machines
,”
Simul. Model. Pract. Theory
,
26
, pp.
60
76
.10.1016/j.simpat.2012.03.008
15.
Hsieh
,
C.-F.
,
2012
. “
Fluid and Dynamics Analyses of a Gerotor Pump Using Various Span Angle Designs
,”
ASME J. Mech. Des.
,
134
(
12
), p.
121003
.10.1115/1.4007703
16.
Frosina
,
E.
,
Senatore
,
A.
,
Buono
,
D.
, and
Olivetti
,
M.
,
2014
, “
A Tridimensional CFD Analysis of the Oil Pump of an High Performance Engine
,” SAE, Technical Paper No. 2014-01-1712.
17.
Jasak
,
H.
,
1996
, “
Error Analysis and Estimation for the Finite Volume Method With Applications to Fluid Flows
,” Ph.D. thesis, Imperial College of Science, Technology, and Medicine, London, UK.
18.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
(
6
), pp.
620
631
.10.1063/1.168744
19.
OpenCFD Ltd.
,
2012
, “
OpenFoam. The Open Source cfd Toolbox
,” Version 2.1.1, http://www.openfoam.org
20.
Patankar
,
S. V.
, and
Spalding
,
D. B.
,
1972
,
Numerical Prediction of Three-dimensional Flows
,
Imperial College of Science and Technology Mechanical Engineering Department
,
London, UK
.
21.
Issa
,
R.
,
1986
, “
Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting
,”
J. Comput. Phys.
,
62
(
1
), pp.
40
65
.10.1016/0021-9991(86)90099-9
22.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
,
Pearson Education Limited
,
Essex, UK
.
23.
del Campo
,
D.
,
Castilla
,
R.
,
Raush
,
G.
,
Gamez-Montero
,
P. J.
, and
Codina
,
E.
,
2012
, “
Numerical Analysis of External Gear Pumps Including Cavitation
,”
ASME J. Fluids Eng.
,
134
(
8
), p.
081105
.10.1115/1.4007106
24.
Gamez-Montero
,
P. J.
,
Castilla
,
R.
,
del Campo
,
D.
,
Ertürk
,
N.
,
Raush
,
G.
, and
Codina
,
E.
,
2012
, “
Influence of the Interteeth Clearances on the Flow Ripple in a Gerotor Pump for Engine Lubrication
,”
Proc. Inst. Mech. Eng., Part D
,
226
(
7
), pp.
930
942
.10.1177/0954407011431545
25.
del Campo
,
D.
,
2011
, “
Analysis of the Suction Chamber of External Gear Pumps and Their Influence on Cavitation and Volumetric Efficiency
,” Ph.D. thesis, ETSEIAT—Universitat Politècnica de Catalunya, Terrassa, Spain.
26.
del Campo
,
D.
,
Castilla
,
R.
,
Raush
,
G. A.
,
Gamez-Montero
,
P. J.
, and
Codina
,
E.
,
2014
, “
Pressure Effects on the Performance of External Gear Pumps Under Cavitation
,”
J. Mech. Eng. Sci.
,
228
(
16
), pp.
2925
2937
10.1177/0954406214522990.
27.
Erturk
,
N.
,
Vernet
,
A.
,
Pallares
,
J.
,
Castilla
,
R.
, and
Raush
,
G.
,
2013
, “
Small-Scale Characteristics and Turbulent Statistics of the Flow in an External Gear Pump by Time-Resolved PIV
,”
Flow Meas. Instrum.
,
29
, pp.
52
60
.10.1016/j.flowmeasinst.2012.09.004
28.
Open Cascade
,
2012
, “
Salome6, The Open Source Integration Platform for Numerical Simulation
,” http://www.salome-platform.org
29.
Gschaider
,
B.
,
2014
, “
Pyfoam, Wiki page
,” http://openfoamwiki.net/index.php/Contrib/PyFoam
30.
Hartinger
,
M.
,
2007
, “
CFD Modeling of Elastohydrodynamic Lubrication
,” Ph.D. thesis, Imperial College, London, UK.
31.
Hartinger
,
M.
,
Dumont
,
M.-L.
,
Ioannides
,
S.
,
Gosman
,
D.
, and
Spikes
,
H.
,
2008
, “
CFD Modeling of a Thermal and Shear-Thinning Elastohydrodynamic Line Contact
,”
ASME J. Tribol.
,
130
(
4
), p.
041503
.10.1115/1.2958077
32.
Esmailzadeh
,
H.
, and
Passandideh-Fard
,
M.
,
2014
, “
Numerical and Experimental Analysis of the Fluid-Structure Interaction in Presence of a Hyperelastic Body
,”
ASME J. Fluids Eng.
,
136
(
11
), p.
111107
.10.1115/1.4027893
33.
Castilla
,
R.
,
Wojciechowski
,
J.
,
Gamez-Montero
,
P.
,
Vernet
,
A.
, and
Codina
,
E.
,
2008
, “
Analysis of the Turbulence in the Suction Chamber of an External Gear Pump Using Time Resolved Particle Image Velocimetry
,”
Flow Meas. Instrum.
,
19
(
6
), pp.
377
384
.10.1016/j.flowmeasinst.2008.06.005
34.
Erturk
,
N.
,
Vernet
,
A.
,
Castilla
,
R.
,
Gamez-Montero
,
P.
, and
Ferre
,
J.
,
2011
, “
Experimental Analysis of the Flow Dynamics in the Suction Chamber of an External Gear Pump
,”
Int. J. Mech. Sci.
,
53
(
2
), pp.
135
144
.10.1016/j.ijmecsci.2010.12.003
You do not currently have access to this content.