To characterize cryogenic pump performance, at least one parameter in addition to flow coefficient and cavitation number is required. This parameter arises because the heat of vaporization and other physical parameters change along the saturation line of liquids and results in a thermal effect on cavitation that has been observed and studied by previous researchers over a range of operating conditions and working fluids. These previous efforts have defined both dimensionless and dimensional parameters governing thermal effects in pumps. In the present work, a dimensionless parameter (DB) scaling thermal effects in a cavitating pump across different tip diameters, rotational speeds, and working fluids is derived using a model of bubble growth in a time-varying pressure field. Although the derivation is somewhat different than others have used, the result is similar and in some cases identical to that of others. Careful testing is carried out to experimentally validate this parameter with (deaerated) variable temperature water and with variable pump speed. The results show that within the accuracy of the data, the same head fall-off curve is obtained when either the water temperature or the pump speed is used to set the DBs. This suggests the proposed parameter can thermally scale cryogenic pumping conditions for suction performance when testing in hot water. Also examined is the effect of thermodynamics on inducer cavitation instabilities. The quasi-steady, dynamic environments at the pump inlet are compared in cold and superheated water. The cavitation instabilities of the test inducer are found to be dramatically changed by thermal effects. These findings emphasize the importance of considering both fluid mechanical and thermal scaling when designing a test program to evaluate the suction performance of a cryogenic pump.

References

References
1.
Stahl
,
H. A.
, and
Stepanoff
,
A. J.
,
1956
, “
Thermodynamic Aspects of Cavitation in Centrifugal Pumps
,”
J. Basic Eng.
,
78
, pp.
1691
1693
.
2.
Spraker
,
W. A.
,
1965
, “
The Effects of Fluid Properties on Cavitation in Centrifugal Pumps
,”
J. Eng. Power
,
87
(
3
), pp.
309
318
.10.1115/1.3678264
3.
Cooper
,
P.
,
1967
, “
Analysis of Single and Two-Phase Flows in Turbopump Inducers
,”
J. Eng. Power
,
89
(4), pp.
577
586
.
4.
Ruggeri
,
S. R.
, and
Moore
,
R. S.
,
1969
, “
Method for Prediction of Pump Cavitation Performance for Various Liquids, Liquid Temperatures, and Rotation Speeds
,” Report No. NASA TN D-5292.
5.
Hord
,
J.
,
1973
, “
Cavitation in Liquid Cryogens
,” Report No. NASA CR 2156.
6.
Holl
,
J. W.
,
Billet
,
M. L.
, and
Weir
,
D. S.
,
1975
, “
Thermodynamic Effects on Developed Cavitation
,”
ASME J. Fluids Eng.
,
97
(
4
), pp.
507
516
.10.1115/1.3448095
7.
Kato
,
H.
,
Yamaguchi
,
H.
,
Okada
,
S.
,
Kikuchi
,
K.
, and
Myanaga
,
M.
,
1984
, “
Thermodynamic Effect on Incipient and Developed Sheet Cavitation
,”
International Symposium on Cavitation Inception
, pp.
127
136
.
8.
Brennen
,
C. E.
,
1994
,
Hydrodynamics of Pumps
,
Oxford University Press
, Oxford, UK.
9.
Brennen
,
C. E.
,
1995
,
Cavitation and Bubble Dynamics
,
Oxford University Press
, Oxford, UK.
10.
Franc
,
J. P.
,
Janson
,
E.
,
Morel
,
P.
,
Rebattet
,
C.
, and
Riondet
,
M.
,
2001
, “
Visualizations of Leading Edge Cavitation in an Inducer at Different Temperatures
,”
International Symposium on Cavitation (CAV2001)
, Paper No. B7.002.
11.
Franc
,
J.-P.
,
Rebattet
,
C.
, and
Coulon
,
A.
,
2004
, “
An Experimental Investigation of Thermal Effects in a Cavitating Inducer
,”
ASME J. Fluids Eng.
,
126
(
5
), pp.
716
723
.10.1115/1.1792278
12.
Franc
,
J.-P.
, and
Pelione
,
C.
,
2007
, “
Analysis of Thermal Effects in a Cavitating Inducer Using Rayleigh Equation
,”
ASME J. Fluids Eng.
,
129
(
8
), pp.
974
983
.10.1115/1.2746919
13.
Yoshida
,
Y.
,
Kikuta
,
K.
,
Hasagawa
,
S.
,
Shimagaki
,
M.
, and
Tokumasu
,
T.
,
2007
, “
Thermodynamic Effect on a Cavitating Inducer in Liquid Nitrogen
,”
ASME J. Fluids Eng.
,
129
(
3
), pp.
273
278
.10.1115/1.2427076
14.
Watanabe
,
S.
,
Hidaka
,
T.
,
Horiguchi
,
H.
,
Furukawa
,
A.
, and
Tsujimoto
,
Y.
,
2007
, “
Steady Analysis of the Thermodynamic Effects of Partial Cavitation Using the Singularity Method
,”
ASME J. Fluids Eng.
,
129
(
9
), pp.
121
127
.10.1115/1.2409333
15.
Watanabe
,
S.
,
Hidaka
,
T.
,
Horiguchi
,
H.
,
Furukawa
,
A.
, and
Tsujimoto
,
Y.
,
2007
, “
Analysis of Thermodynamic Effects on Cavitation Instabilities
,”
ASME J. Fluids Eng.
,
129
(
9
), pp.
1123
1130
.10.1115/1.2754326
16.
Torre
,
L.
,
Cervone
,
A.
,
Pasini
,
A.
, and
d'Agostino
,
L.
,
2011
, “
Experimental Characterization of Thermal Effects on Space Rocket Axial Inducers
,”
ASME J. Fluids Eng.
,
133
(
10
), p.
101102
.10.1115/1.4005100
17.
Murdock
,
J. W.
,
1967
, “
Bubble Growth in a Supersaturated Liquid With a Time Varying Pressure
,” Sc.D. thesis, Appendix A, Massachusetts Institute of Technology, Cambridge, MA.
18.
Forster
,
H. K.
, and
Zuber
,
N.
,
1954
, “
Growth of a Vapor Bubble in a Superheated Liquid
,”
J. Appl. Phys.
,
25
(
4
), pp.
474
478
.10.1063/1.1721664
19.
Ehrlich
,
D. A.
,
Schwille
,
J.
,
Murdock
,
J.
,
Welle
,
R.
, and
Hardy
,
B.
,
2009
, “
A Water Test Facility for Liquid Rocket Engine Turbopump Cavitation Testing
,”
Proceedings of the 7th International Symposium on Cavitation
,
Ann Arbor, MI
, Paper No. 11.
20.
Ehrlich
,
D. A.
, and
Schwille
,
J. A.
,
2011
, “
Development and Validation of Turbopump Cavitation Tools, Part 1: High Fidelity Inducer Testing
,”
Proceedings of the 6th JANNAF Liquid Propulsion Subcommittee Meeting
,
Huntsville, AL
.
21.
Tsujimoto
,
Y.
,
Yoshida
,
Y.
,
Maekawa
,
Y.
, and
Watanabe
,
S.
,
1997
, “
Observations of Oscillating Cavitation of an Inducer
,”
ASME J. Fluids Eng.
,
119
(
4
), pp.
775
781
.10.1115/1.2819497
22.
Rapposelli
,
E.
,
Cervone
,
A.
,
Testa
,
R.
, and
d'Agostino
,
L.
,
2004
, “
Thermal Effects on Cavitation Instabilities in Helical Inducers
,” Journal of Propulsion and Power,
21
(5), pp. 893–899.
23.
Yoshida
,
Y.
,
Sasao
,
Y.
,
Okita
,
K.
,
Hasagawa
,
S.
,
Shimagaki
,
M.
, and
Ikohagi
,
T.
,
2007
, “
Influence of Thermodynamic Effect on Synchronous Rotating Cavitation
,”
ASME J. Fluids Eng.
,
129
(
7
), pp.
871
876
.10.1115/1.2745838
You do not currently have access to this content.