In this work, we describe drag reduction experiments performed in a large diameter pipe (i.d. 100 mm) using a semirigid biopolymer Xanthan Gum (XG). The objective is to build a self-consistent data base which can be used for validation purposes. To aim this, we ran a series of tests measuring friction factor at different XG concentrations (0.01, 0.05, 0.075, 0.1, and 0.2% w/w XG) and at different values of Reynolds number (from 758 to 297,000). For each concentration, we obtain also the rheological characterization of the test fluid. Our data is in excellent agreement with data collected in a different industrial scale test rig. The data is used to validate design equations available from the literature. Our data compare well with data gathered in small scale rigs and scaled up using empirically based design equations and with data collected for pipes having other than round cross section. Our data confirm the validity of a design equation inferred from direct numerical simulation (DNS) which was recently proposed to predict the friction factor. We show that scaling procedures based on this last equation can assist the design of piping systems in which polymer drag reduction can be exploited in a cost effective way.

References

1.
Wyatt
,
N. B.
, and
Liberatore
,
M. W.
,
2009
, “
Rheology and Viscosity Scaling of the Polyelectrolyte Xanthan Gum
,”
J. Appl. Polym. Sci.
,
114
(
6
), pp.
4076
4084
.10.1002/app.31093
2.
Kim
,
K.
, and
Sureshkumar
,
R.
,
2013
, “
Spatiotemporal Evolution of Hairpin Eddies, Reynolds Stress, and Polymer Torque in Polymer Drag-Reduced Turbulent Channel Flows
,”
Phys. Rev. E
,
87
(
6
), p.
063002
.10.1103/PhysRevE.87.063002
3.
Ptasinski
,
P. K.
,
Boersma
,
B. J.
,
Nieuwstadt
,
F. T. M.
,
Hulsen
,
M. A.
,
Van den Brule
,
B. H. A. A.
, and
Hunt
,
J. C. R.
,
2009
, “
Effects of Salinity and Temperature on Drag Reduction Characteristics of Polymers in Straight Circular Pipes
,”
J. Pet. Sci. Eng.
,
67
(
1–2
), pp.
23
33
.10.1016/j.petrol.2009.02.004
4.
White
,
C. M.
, and
Mungal
,
M. G.
,
2008
, “
Mechanics and Prediction of Turbulent Drag Reduction With Polymer Additives
,”
Annu. Rev. Fluid Mech.
,
40
, pp.
235
256
.10.1146/annurev.fluid.40.111406.102156
5.
De Angelis
,
E.
,
Casciola
,
C. M.
,
L’vov
,
V. S.
,
Pomyalov
,
A.
,
Procaccia
,
I.
, and
Tiberkevich
,
V.
,
2004
, “
Drag Reduction by a Linear Viscosity Profile
,”
Phy. Rev. E
,
70
(
5
), p.
055301(R)
.10.1103/PhysRevE.70.055301
6.
Min
,
T.
,
Jung
,
Y. Y.
,
Choi
,
H.
, and
Joseph
,
D. D.
,
2003
, “
Drag Reduction by Polymer Additives in a Turbulent Channel Flow
,”
J. Fluid Mech.
,
486
, pp.
213
238
.10.1017/S0022112003004610
7.
Ptasinski
,
P. K.
,
Boersma
,
B. J.
,
Nieuwstadt
,
F. T. M.
,
Hulsen
,
M. A.
,
Brule
,
B. H. A. A.
, and
van den Hunt
,
J. C. R.
,
2003
, “
Turbulent Channel Flow Near Maximum Drag Reduction: Simulations, Experiments and Mechanisms
,”
J. Fluid Mech.
,
490
, pp.
251
291
.10.1017/S0022112003005305
8.
Housiadas
,
K. D.
, and
Beris
,
A. N.
,
2004
, “
Characteristic Scales and Drag Reduction Evaluation in Turbulent Channel Flow of Non Constant Viscosity Viscoelastic Fluids
,”
Phys. Fluids
,
16
(
5
), pp.
1581
1586
.10.1063/1.1689971
9.
Dubief
,
Y.
,
Terrapon
,
V. E.
,
White
,
C. M.
,
Shaqfeh
,
E. S. G.
,
Moin
,
P.
, and
Lele
,
S. K.
,
2005
, “
New Answers on the Interaction Between Polymers and Vortices in Turbulent Flows
,”
Flow Turbul. Combust.
,
74
(
4
), pp.
311
329
.10.1007/s10494-005-9002-6
10.
Housiadas
,
K. D.
, and
Beris
,
A. N.
,
2013
, “
On the Skin Friction Coefficient in Viscoelastic Wall-Bounded Flows
,”
Int. J. Heat Fluid Flow
,
42
, pp.
49
67
.10.1016/j.ijheatfluidflow.2012.11.004
11.
Escudier
,
M. P.
,
Presti
,
F.
, and
Smith
,
S.
,
1999
, “
Drag Reduction in the Turbulent Pipe Flow of Polymers
,”
J. Non-Newtonian Fluid Mech.
,
81
(
3
), pp.
197
213
.10.1016/S0377-0257(98)00098-6
12.
Hoyt
,
J. W.
, and
Sellin
,
R. H. J.
,
1993
, “
Scale Effect in Polymer Pipe Flow
,”
Exp. Fluids
,
15
(
1
), pp.
70
74
.10.1007/BF00195598
13.
Bewersdorff
,
H. W.
, and
Singh
,
R. P.
,
1988
, “
Rheological and Drag Reduction Characteristics of Xanthan Gum Solutions
,”
Rheol. Acta
,
27
(
6
), pp.
617
627
.10.1007/BF01337457
14.
Sellin
,
R. H. J.
, and
Ollis
,
M.
,
1983
, “
Effect of Pipe Diameter on Polymer Drag Reduction
,”
Ind. Eng. Chem. Prod. Res. Dev.
,
22
(
3
), pp.
445
452
.10.1021/i300011a012
15.
Gasljevic
,
K.
,
Aguilar
,
G.
, and
Matthys
,
E. F.
,
2001
, “
On Two Distinct Types of Drag-Reducing Fluids, Diameter Scaling, and Turbulent Profiles
,”
J. Non-Newtonian Fluid Mech.
,
96
(
3
), pp.
405
425
.10.1016/S0377-0257(00)00169-5
16.
Escudier
,
M. P.
,
Nickson
,
A. K.
, and
Poole
,
R. J.
,
2009
, “
Turbulent Flow of Viscoelastic Shear-Thinning Liquids Through a Rectangular Duct: Quantification of Turbulence Anisotropy
,”
J. Non-Newtonian Fluid Mech.
,
160
(
1
), pp.
2
10
.10.1016/j.jnnfm.2009.01.002
17.
Japper-Jaafar
,
A.
,
Escudier
,
M. P.
, and
Poole
,
R. J.
,
2010
, “
Laminar, Transitional and Turbulent Annular Flow of Drag-Reducing Polymer Solutions
,”
J. Non-Newtonian Fluid Mech.
,
165
(
19–20
), pp.
1357
1372
.10.1016/j.jnnfm.2010.07.001
18.
Jaafar
,
A.
, and
Poole
,
R. J.
,
2011
, “
Drag Reduction of Biopolymer Flows
,”
J. Appl. Sci.
,
11
(
9
), pp.
1544
1551
.10.3923/jas.2011.1544.1551
19.
Dearing
,
S. S.
,
Campolo
,
M.
,
Capone
,
A.
, and
Soldati
,
A.
,
2013
, “
Phase Discrimination and Object Fitting to Measure Fibers Distribution and Orientation in Turbulent Pipe Flows
,”
Exp. Fluids
,
54
(
1
), p.
1419
.10.1007/s00348-012-1419-9
20.
Poole
,
R. J.
, and
Ridley
,
B. S.
,
2007
, “
Development-Length Requirements for Fully Developed Laminar Pipe Flow of Inelastic Non-Newtonian Liquids
,”
ASME J. Fluids Eng.
,
129
(
10
), pp.
1281
1287
.10.1115/1.2776969
21.
Gasljevic
,
K.
,
Aguilar
,
G.
, and
Matthys
,
E. F.
,
2007
, “
Measurement of Temperature Profiles in Turbulent Pipe Flow of Polymer and Surfactant Drag-Reducing Solutions
,”
Phys. Fluids
,
19
(
8
), p.
083105
.10.1063/1.2770257
22.
Escudier
,
M. P.
, and
Smith
,
S.
,
2001
, “
Fully Developed Turbulent Flow of Non-Newtonian Liquids Through a Square Duct
,”
Proc. R. Soc. London, Ser. A
,
457
, pp.
911
936
.10.1098/rspa.2000.0698
23.
Choppe
,
E.
,
Puaud
,
F.
,
Nicolai
,
T.
, and
Benyahia
,
L.
,
2010
, “
Rheology of Xanthan Solutions as a Function of Temperature, Concentration and Ionic Strength
,”
Carbohydr. Polym.
,
82
(
4
), pp.
1228
1235
.10.1016/j.carbpol.2010.06.056
24.
Rodd
,
A. B.
,
Dunstan
,
D. E.
, and
Boger
,
D. V.
,
2000
, “
Characterisation of Xanthan Gum Solutions Using Dynamic Light Scattering and Rheology
,”
Carbohydr. Polym.
,
42
(
2
), pp.
159
174
.10.1016/S0144-8617(99)00156-3
25.
Yasuda
,
K.
,
Armstrong
,
R. C.
, and
Cohen
,
R. E.
,
1981
, “
Shear Flow Properties of Concentrated Solutions of Linear and Star Branched Polystyrenes
,”
Rheol. Acta
,
20
(
2
), pp.
163
178
.10.1007/BF01513059
26.
Escudier
,
M. P.
,
Gouldson
, I
. W.
,
Pereira
,
A. S.
,
Pinho
,
F. T.
, and
Poole
,
R. J.
,
2001
, “
On the Reproducibility of the Rheology of Shear-Thinning Liquids
,”
J. Non-Newtonian Fluid Mech.
,
97
(
2–3
), pp.
99
124
.10.1016/S0377-0257(00)00178-6
27.
Amarouchene
,
Y.
,
Bonn
,
D.
,
Kellay
,
H.
,
Lo
,
T. S.
,
L’vov
, V
. S.
, and
Procaccia
,
I.
,
2008
, “
Reynolds Number Dependence of Drag Reduction by Rodlike Polymers
,”
Phys. Fluids
,
20
(
6
), p.
065108
.10.1063/1.2931576
28.
Procaccia
,
I.
,
L’vov
,
V. S.
, and
Benzi
,
R.
,
2008
, “
Colloquium: Theory of Drag Reduction by Polymers in Wall-Bounded Turbulence
,”
Rev. Mod. Phys.
,
80
(
1
), pp.
225
247
.10.1103/RevModPhys.80.225
29.
Metzner
,
A. B.
, and
Reed
,
J. C.
,
1955
, “
Flow of Non-Newtonian Fluids: Correlation of the Laminar, Transition and Turbulent Flow Regions
,”
AIChE J.
,
1
(
4
), pp.
434
440
.10.1002/aic.690010409
30.
Chilton
,
R. A.
, and
Stainsby
,
R.
,
1998
, “
Pressure Loss Equations for Laminar and Turbulent Non-Newtonian Pipe Flow
,”
ASCE J. Hydraul. Eng.
,
124
(
5
), pp.
522
529
.10.1061/(ASCE)0733-9429(1998)124:5(522)
31.
Virk
,
P. S.
,
1975
, “
Drag Reduction Fundamentals
,”
AIChE J.
,
21
(
4
), pp.
625
656
.10.1002/aic.690210402
32.
Sasaki
,
S
.,
1991
, “
Drag Reduction Effect of Rod-Like Polymer Solutions. i. Influences of Polymer Concentration and Rigidity of Skeletal Back Bone
,”
J. Phys. Soc. Jpn.
,
60
(
3
), pp.
868
878
.10.1143/JPSJ.60.868
33.
Interthal
,
W.
, and
Wilski
,
H.
,
1985
, “
Drag Reduction Experiments With Very Large Pipes
,”
Colloid Polym. Sci.
,
263
(
3
), pp.
217
229
.10.1007/BF01415508
34.
Gasljevic
,
K.
,
Aguilar
,
G.
, and
Matthys
,
E. F.
,
1999
, “
An Improved Diameter Scaling Correlation for Turbulent Flow of Drag-Reducing Polymer Solutions
,”
J. Non-Newtonian Fluid Mech.
,
84
(
2–3
), pp.
131
148
.10.1016/S0377-0257(98)00155-4
35.
Hoyt
,
J. W.
,
1991
, “
Negative Roughness and Polymer Drag Reduction
,”
Exp. Fluids
,
11
(
2–3
), pp.
142
146
.
36.
Colebrook
,
C. F.
,
1939
, “
Turbulent Flow in Pipes, With Particular Reference to the Transition Region Between the Smooth and Rough Pipe Laws
,”
J. Inst. Civil Eng.
,
11
(
4
), pp.
133
156
.10.1680/ijoti.1939.13150
37.
Sharma
,
R. S.
,
1981
, “
Drag Reduction by Fibers
,”
Can. J. Chem. Eng.
,
58
(
6
), pp.
3
13
.10.1002/cjce.5450580602
38.
Vlassopoulos
,
D.
, and
Schowalter
,
W. R.
,
1993
, “
Characterization of the Non-Newtonian Flow Behavior of Drag-Reducing Fluids
,”
J. Non-Newtonian Fluid Mech.
,
49
(
2–3
), pp.
205
250
.10.1016/0377-0257(93)85003-S
39.
Little
,
R. C.
,
Hansen
,
R. J.
,
Hunston
,
D. L.
,
Kim
,
O.
,
Patterson
,
R. L.
, and
Ting
,
R. Y.
,
1975
, “
The Drag Reduction Phenomenon. Observed Characteristics, Improved Agents, and Proposed Mechanisms
,”
Ind. Eng. Chem., Fundam.
,
14
(
4
), pp.
283
296
.10.1021/i160056a001
You do not currently have access to this content.