In a hypervelocity impact (HVI) event, the shock pressures exceed the strength of common aerospace materials, and brief shock-induced temperature rises cause melting and vaporization of most structural bodies. Under these extreme conditions, the failure and deformation of solids can resemble fluid flow. By using meshless Lagrangian models in an explicit computational framework, this work identifies analogous fluidic interactions and further quantifies the role of shear and inertial forces in HVIs.

References

References
1.
Imburgia
,
J. S.
,
2011
, “
Space Debris and Its Threat to National Security: A Proposal for a Binding International Agreement to Clean Up the Junk
,”
Vand. J. Transnat'l L.
,
44
, pp.
589
641
.
2.
Przemieniecki
,
J. S.
,
1991
, Air Force Institute of Technology,
Critical Technologies for National Defense
,
American Institute of Aeronautics and Astronautics
, Reston, VA.
3.
Byrnside
,
N. C.
,
Torvik
,
P. J.
, and
Swift
,
H. F.
,
1972
, “
Impact Crater Formation at Intermediate Velocities
,”
ASME J. Fluids Eng.
,
94
(
2
), pp.
394
400
.10.1115/1.3425433
4.
Hopkins
,
A. K.
,
Lee
,
T. W.
, and
Swift
,
H. F.
,
1972
, “
Material Phase Transformation Effects upon Performance of Spaced Bumper Systems
,”
J. Spacecr. Rockets
,
9
(
5
), pp.
342
345
.10.2514/3.61684
5.
Borg
,
J.
,
Bartyczak
,
S.
,
Swanson
,
N.
, and
Cogar
,
J. R.
,
2006
, “
Impact and Dispersion of Liquid Filled Cylinders
,”
ASME J. Fluids Eng.
,
128
(
6
), pp.
1295
1307
.10.1115/1.2353270
6.
Whipple
,
F.
,
1947
, “
Meteorites and Space Travel
,”
Astron. J.
,
52
(
5
), p.
131
.10.1086/106009
7.
Christiansen
,
E. L.
,
1993
, “
Design and Performance Equations for Advanced Meteoroid and Debris Shields
,”
Int. J. Impact Eng.
,
14
(
1
), pp.
145
156
.10.1016/0734-743X(93)90016-Z
8.
Riedel
,
W.
,
Nahme
,
H.
,
White
,
D. M.
, and
Clegg
,
R. A.
,
2006
, “
Hypervelocity Impact Damage Prediction in Composites: Part II—Experimental Investigations and Simulations
,”
Int. J. Impact Eng.
,
33
(
1–12
), pp.
670
680
.10.1016/j.ijimpeng.2006.09.052
9.
Zukas
,
J. A.
,
1990
,
High Velocity Impact Dynamics
,
Wiley
, New York.
10.
Libersky
,
L. D.
, and
Petschek
,
A.
,
1991
, “
Smooth Particle Hydrodynamics With Strength of Materials
,” Advances in the Free-Lagrange Method Including Contributions on Adaptive Gridding and the Smooth Particle Hydrodynamics Method,
Springer
, Berlin, Germany, pp.
248
257
.10.1007/3-540-54960-9
11.
Sadek
,
S. H.
, and
Yildiz
,
M.
,
2013
, “
Modeling Die Swell of Second-Order Fluids Using Smoothed Particle Hydrodynamics
,”
ASME J. Fluids Eng.
,
135
(
5
), p.
051103
.10.1115/1.4023645
12.
Lucy
,
L. B.
,
1977
, “
A Numerical Approach to the Testing of the Fission Hypothesis
,”
Astron. J.
,
82
(
12
), pp.
1013
1024
.10.1086/112164
13.
Gingold
,
R. A.
, and
Monaghan
,
J. J.
,
1977
, “
Smoothed Particle Hydrodynamics—Theory and Application to Non-Spherical Stars
,”
Mon. Not. R. Astron. Soc.
,
181
(
3
), pp.
375
389
.10.1093/mnras/181.3.375
14.
Gingold
,
R.
, and
Monaghan
,
J.
,
1982
, “
Kernel Estimates as a Basis for General Particle Methods in Hydrodynamics
,”
J. Comput. Phys.
,
46
(
3
), pp.
429
453
.10.1016/0021-9991(82)90025-0
15.
Dal Santo
,
M.
, and
Bayandor
,
J.
,
2010
, “
Explosion Damage Prediction of Advanced Space Structures Subject to Hypervelocity Impact
,”
48th AIAA Aerospace Sciences Meeting
,
AIAA
Paper No. 2010-73.10.2514/6.2010-73
16.
Liu
,
G. G. R.
, and
Liu
,
B.
,
2003
,
Smoothed Particle Hydrodynamics: A Meshfree Particle Method
,
World Scientific Publishing Company
,
Incorporated
, River Edge, NJ.
17.
Monaghan
,
J.
, and
Gingold
,
R.
,
1983
, “
Shock Simulation by the Particle Method SPH
,”
J. Comput. Phys.
,
52
(
2
), pp.
374
389
.10.1016/0021-9991(83)90036-0
18.
Monaghan
,
J. J.
,
1994
, “
Simulating Free Surface Flows With SPH
,”
J. Comput. Phys.
,
110
(
2
), pp.
399
406
.10.1006/jcph.1994.1034
19.
Thurber
,
A.
, and
Bayandor
,
J.
,
2013
, “
Unlocking the Physics of Hypervelocity Impact
,”
ASME 2013 Fluids Engineering Division Summer Meeting
, Incline Village, NV, July 7–11, Paper No. V01BT14A007.
20.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Proceedings of the 7th International Symposium on Ballistics, International Ballistics Committee
,
The Hague, South Holland, The Netherlands
, Apr. 19–21, pp.
541
547
.
21.
Piekutowski
,
A. J.
,
1993
, “
Characteristics of Debris Clouds Produced by Hypervelocity Impact of Aluminum Spheres With Thin Aluminum Plates
,”
Int. J. Impact Eng.
,
14
(
1
), pp.
573
586
.10.1016/0734-743X(93)90053-A
22.
Johnson
,
G. R.
, and
Holmquist
,
T. J.
,
1989
, “
Test Data and Computational Strength and Fracture Model Constants for 23 Materials Subjected to Large Strains, High Strain Rates, and High Temperatures
,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-11463-MS.
23.
Steinberg
,
D. J.
,
1991
, “
Equation of State and Strength Properties of Selected Materials, Lawrence Livermore National Laboratories
,” Livermore, CA, Report No. UCRL-MA-106439.
24.
Roache
,
P. J.
,
1997
, “
Quantification of Uncertainty in Computational Fluid Dynamics
,”
Ann. Rev. Fluid Mech.
,
29
(
1
), pp.
123
160
.10.1146/annurev.fluid.29.1.123
You do not currently have access to this content.