The paper deals with the issues of stochastic dispersion models for the inertial particle turbulent flow. Thereby, dispersion models are applied to generate the instantaneous velocity of the fluid at particle location to reproduce the effect of turbulence on particle transport within an Eulerian–Lagrangian approach. Especial focus is on the influence of unsteady calculation of carrier phase in combination with unsteady phase coupling. Computations are carried out in a particle-laden turbulent shear flow using three dispersion models. It turns out that accurate prediction of the carrier phase is essential to predict the dispersion in an acceptable level of accuracy.

References

References
1.
Mehel
,
A.
,
Taniére
,
A.
,
Oesterlé
,
B.
, and
Fontaine
,
J. R.
,
2010
, “
The Influence of an Anisotropic Langevin Dispersion Model on the Prediction of Micro- and Nanoparticle Deposition in Wall-Bounded Turbulent Flows
,”
J. Aerosol Sci.
,
41
(
8
), pp.
729
744
.10.1016/j.jaerosci.2010.04.011
2.
Horender
,
S.
,
2005
, “
Modeling of the Vortex-Structure in a Particle-Laden Mixing-Layer
,”
ASME
Paper No. FEDSM2005-77040.10.1115/FEDSM2005-77040
3.
Tian
,
L.
, and
Ahmadi
,
G.
,
2007
, “
Particle Deposition in Turbulent Duct Flows-Comparisons of Different Model Predictions
,”
J. Aerosol Sci.
,
38
(
4
), pp.
377
397
.10.1016/j.jaerosci.2006.12.003
4.
Fede
,
P.
,
Simonin
,
O.
,
Villedieu
,
P.
, and
Squires
,
K. D.
,
2006
, “
Stochastic Modeling of the Turbulent Subgrid Fluid Velocity Along Inertial Particle Trajectories
,”
Proceeding of the Summer Program Center for Turbulence Research Stanford University
, Stanford, CA, July 9–Aug. 4, pp.
247
258
.
5.
Sadiki
,
A.
,
2005
, “
Extended Thermodynamics as Modeling Tool of Turbulence Fluid Flows
,” Trends in Applications of Mathematics to Mechanics, Shaker Verlag Aachen, Germany, pp.
451
462
.
6.
Sadiki
,
A.
,
Chrigui
,
M.
, and
Dreizler
,
A.
,
2013
, “
Thermodynamically Consistent Modelling of Gas Turbine Combustion Sprays
,” Flow and Combustion in Advanced Gas Turbine Combustors, Series Fluid Mechanics and Applications, Springer Science and Business Media, Dordrecht, The Netherlands, Vol.
102
, pp.
55
90
.
7.
Zhang
,
Z.
, and
Chen.
,
Q.
,
1995
, “
Prediction of Particle Deposition Onto Indoor Surfaces by CFD With a Modified Lagrangian Method
,”
Atmos. Environ.
,
43
(
2
), pp.
319
328
.10.1016/j.atmosenv.2008.09.041
8.
Yuu
,
S.
,
Yasukouchi
,
N.
,
Hirosawa
,
Y.
, and
Jotaki
,
T.
,
1978
, “
Particle Turbulent Diffusion in a Dust Laden Round Jet
,”
AIChE J.
,
24
(
3
), pp.
509
519
.10.1002/aic.690240316
9.
Gosman
,
A. D.
, and
Ionnides
,
I. E.
,
1981
, “
Aspects of Computer Simulation of Liquid Fuelled Combustors
,”
J. Energy
,
7
pp. 482–490.
10.
Crowe
,
C. T.
,
Troutt
,
T. R.
, and
Chung
,
J. N.
,
1996
, “
Numerical Models for Two-Phase Turbulent Flows
,”
Annu. Rev. Fluid Mech.
28
, pp.
11
43
.
10.1146/annurev.fl.28.010196.000303
11.
Blümcke
,
E.
,
Brandt
,
M.
,
Eickhoff
,
H.
, and
UndHassa
,
C.
,
1993
, “
Particle Dispersion in Highly Swirling, Turbulent Flows
,”
Part. Part. Syst. Char.
,
10
(
4
), pp.
182
190
.10.1002/ppsc.19930100406
12.
Coimbra
,
C. F. M.
,
Shirolkar
,
J. S.
, and
MeQuay
,
M. Y.
,
1998
, “
Modeling Particle Dispersion in a Turbulent Multi Phase Mixing Layer
,”
J. Wind Eng. Ind. Aerodyn.
,
73
(
1
), pp.
79
97
.10.1016/S0167-6105(97)00131-1
13.
Minier
,
J.-P.
,
1999
, “
Closure Proposals for the Langevin Equation Model in Lagrangian Two-Phase Flow Modeling
,”
Proceedings of the 3rd ASME/JSME Joint Fluids Engineering Conference
, San Francisco, CA, July 18–23.
14.
Peirano
,
E.
,
Chibbaro
,
S.
,
Pozorski
,
J.
, and
Minier
,
J.-P.
,
2005
, “
Mean-Field/PDF Numerical Approach for Polydispersed Turbulent Two-Phase Flows
,”
Prog. Energy Combust. Sci.
,
32
(
3
), pp.
315
371
.10.1016/j.pecs.2005.07.002
15.
Pope
,
S. B.
,
1994
, “
Lagrangian PDF Methods for Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
26
, pp.
23
62
.10.1146/annurev.fl.26.010194.000323
16.
Walklate
,
P. J.
,
1995
, “
A Markov-Chain Particle Dispersion Model Based on Air Flow Data: Extension to Large Water Particles
,”
Boundary Layer Meteorol.
,
37
(
3
), pp.
313
318
.10.1007/BF00122992
17.
Kohnen
,
G.
,
Rueger
,
M.
, and
Sommerfeld
,
M.
,
1994
, “
Convergence Behavior for Numerical Calculations by the Euler/Lagrange Method for Strongly Coupled Phases
,” Numerical Method in Multiphases Flows, ASME, Houston, TX, Vol.
185
.
18.
Legg
,
B. J.
, and
Raupach
,
M. R.
,
1982
, “
Markov-Chain Simulation of Particle Dispersion in Inhomogeneous Flows: The Mean Drift Velocity Induced by a Gradient in Eulerian Velocity Variance
,”
Boundary Layer Meteorol.
,
24
(
1
), pp.
3
13
.10.1007/BF00121796
19.
Sadiki
,
A.
,
Ahmadi
,
W.
,
Chrigui
,
M.
, and
Janicka
,
J.
,
2011
, “
Towards the Impact of Fuel Evaporation/Combustion Interaction on Spray Combustion in Gas Turbine Combustion Chambers. Part I: Effect of Partial Fuel Vaporization on Spray Combustion
,”
Experiments and Numerical Simulations of Diluted Spray Turbulent Combustion (ERCOFTAC Series)
,
B.
Merci
,
D.
Roekaerts
, and
A.
Sadiki
, eds.,
Springer Science and Business Media, Dordrecht, The Netherlands
, Vol.
17
, pp.
69
110
.
20.
Sadiki
,
A.
,
Chrigui
,
M.
,
Janicka
,
J.
, and
Maneshkarimi
,
M. R.
,
2005
, “
Modeling and Simulation of Effects of Turbulence on Vaporization, Mixing and Combustion of Liquid-Fuel Sprays
,”
Flow Turbul. Combust.
,
75
(
1–7
), pp.
105
130
.10.1007/s10494-005-8579-0
21.
Chrigui
,
M.
,
Ahmadi
,
G.
, and
Sadiki
,
A.
,
2004
, “
Study on Interaction in Spray Between Evaporating Particles and Turbulence Using Second-Order Turbulence RANS Models and a Lagrangian Approach
,”
Prog. Comput. Fluid Dyn.
,
4
(
3–5
), pp.
162
174
.10.1504/PCFD.2004.004084
22.
Ahmadi
,
G.
,
Cao
,
J.
,
Schneider
,
L.
, and
Sadiki
,
A.
,
2006
, “
A Thermodynamically Formulation for Chemically Active Multiphase Turbulent Flows
,”
Int. J. Eng. Sci.
,
44
(
11–12
), pp.
699
720
.10.1016/j.ijengsci.2006.06.001
23.
Lain
,
S.
, and
Sommerfeld
,
M.
,
2003
, “
Turbulence Modulation in Dispersed Two-Phase Flow Laden With Solids From a Lagrangian Perspective
,”
Int. J. Heat Fluid Flow
,
24
(
4
), pp.
616
625
.10.1016/S0142-727X(03)00055-9
24.
Tanaka
,
T.
, and
Eaton
,
J. K.
,
2008
, “
Classification of Turbulence Modification by Dispersed Spheres Using a Novel Dimensionless Number
,”
Phys. Rev. Lett.
,
101
, p.
114502
.10.1103/PhysRevLett.101.114502
25.
Beishuizen
,
N. A.
,
Naud
,
B.
, and
Roekaerts
,
D. J. E. M.
,
2007
, “
Evaluation of a Modified Reynolds Stress Model for Turbulent Dispersed Two-Phase Flows Including Two-Way Coupling
,”
Flow Turb. Combust.
,
79
(
3
), pp.
321
341
.10.1007/s10494-007-9090-6
26.
Balachandar
,
S.
, and
Eaton
,
J. K.
,
2010
, “
Turbulent Dispersed Multiphase Flows
,”
Annu. Rev. Fluid Mech.
,
42
, pp.
111
133
.10.1146/annurev.fluid.010908.165243
27.
Horender
,
S.
, and
Sommerfeld
,
M.
, 2010, “
Stochastic Dispersion Modelling Based on the RANS Approach for a Particle Laden Shear Flow
,”
ERCOFTAC Bull.
,
82
, pp.
49
54
.
28.
Mehdizadeh
,
A.
,
Foroutan
,
H.
,
Vijayakumar
,
G.
, and
Sadiki
,
A.
,
2014
, “
A New Formulation of Scale Adaptive Simulation Approach to Predict Complex Wall Bounded Shear Flows
,”
J. Turbul.
,
15
(
10
), pp.
629
649
.10.1080/14685248.2014.927580
29.
Pozorski
,
J.
, and
Luniewski
,
M.
,
2011
, “
Analysis of SGS Effects on Dispersed Particles in Large-Eddy Simulation of Heated Channel Flow
,”
Quality and Reliability of Large-Eddy Simulations II (ERCOFTAC Series)
,
Springer Science and Business Media, Dordrecht, The Netherlands
, Vols.
171–180
.
You do not currently have access to this content.